Skip to main content
Erschienen in: International Journal of Computer Vision 2/2014

01.04.2014

A Simple Prior-Free Method for Non-rigid Structure-from-Motion Factorization

verfasst von: Yuchao Dai, Hongdong Li, Mingyi He

Erschienen in: International Journal of Computer Vision | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a simple “prior-free” method for solving the non-rigid structure-from-motion (NRSfM) factorization problem. Other than using the fundamental low-order linear combination model assumption, our method does not assume any extra prior knowledge either about the non-rigid structure or about the camera motions. Yet, it works effectively and reliably, producing optimal results, and not suffering from the inherent basis ambiguity issue which plagued most conventional NRSfM factorization methods. Our method is very simple to implement, which involves solving a very small SDP (semi-definite programming) of fixed size, and a nuclear-norm minimization problem. We also present theoretical analysis on the uniqueness and the relaxation gap of our solutions. Extensive experiments on both synthetic and real motion capture data (assuming following the low-order linear combination model) are conducted, which demonstrate that our method indeed outperforms most of the existing non-rigid factorization methods. This work offers not only new theoretical insight, but also a practical, everyday solution to NRSfM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We explicitly express the solution as a linear combination of \(2K^2-K\) basis vectors of the null space, then use sum-to-one constraint to fix the scale freedom, i.e., \(\sum _{l=1}^{2K^2 -K} \alpha _l = 1\), where \(\alpha _i\) are coefficients and \(\phi _l\) are the bases of the null space of \(\mathchoice{\displaystyle \mathtt A}{\textstyle \mathtt A}{\scriptstyle \mathtt A}{\scriptscriptstyle \mathtt A}\). See Theorem 2 for detailed explanation.
 
2
An identical rearrangement was used in Akhter et al. (2008) but with different motivation and purpose.
 
3
\(\mathchoice{\displaystyle \mathtt P}{\textstyle \mathtt P}{\scriptstyle \mathtt P}{\scriptscriptstyle \mathtt P}_X(i,3i-2)=1, \mathchoice{\displaystyle \mathtt P}{\textstyle \mathtt P}{\scriptstyle \mathtt P}{\scriptscriptstyle \mathtt P}_Y(i,3i-1)=1, \mathchoice{\displaystyle \mathtt P}{\textstyle \mathtt P}{\scriptstyle \mathtt P}{\scriptscriptstyle \mathtt P}_Z(i,3i)=1\), while all the other positions being zero.
 
4
Matrix Shrinkage Operator: Assume \(\mathchoice{\displaystyle \mathtt X}{\textstyle \mathtt X}{\scriptstyle \mathtt X}{\scriptscriptstyle \mathtt X} \in {\mathbb {R}}^{m\times n}\) and the SVD of \(\mathchoice{\displaystyle \mathtt X}{\textstyle \mathtt X}{\scriptstyle \mathtt X}{\scriptscriptstyle \mathtt X}\) is given by \(\mathchoice{\displaystyle \mathtt X}{\textstyle \mathtt X}{\scriptstyle \mathtt X}{\scriptscriptstyle \mathtt X} = \mathchoice{\displaystyle \mathtt U}{\textstyle \mathtt U}{\scriptstyle \mathtt U}{\scriptscriptstyle \mathtt U} \hbox {Diag}(\sigma )\mathchoice{\displaystyle \mathtt V}{\textstyle \mathtt V}{\scriptstyle \mathtt V}{\scriptscriptstyle \mathtt V}^{\top }, \mathchoice{\displaystyle \mathtt U}{\textstyle \mathtt U}{\scriptstyle \mathtt U}{\scriptscriptstyle \mathtt U} \in {\mathbb {R}}^{m\times r}, \sigma \in {\mathbb {R}}_{+}^r, \mathchoice{\displaystyle \mathtt V}{\textstyle \mathtt V}{\scriptstyle \mathtt V}{\scriptscriptstyle \mathtt V} \in {\mathbb {R}}^{n\times r}\). For any \(v > 0\), the matrix shrinkage operator \(S_v(\cdot )\) is defined as \( S_v(\mathchoice{\displaystyle \mathtt X}{\textstyle \mathtt X}{\scriptstyle \mathtt X}{\scriptscriptstyle \mathtt X}):= \mathchoice{\displaystyle \mathtt U}{\textstyle \mathtt U}{\scriptstyle \mathtt U}{\scriptscriptstyle \mathtt U} \hbox {Diag}(s_v(\sigma )) \mathchoice{\displaystyle \mathtt V}{\textstyle \mathtt V}{\scriptstyle \mathtt V}{\scriptscriptstyle \mathtt V}^{\top }\), where \(s_v(\sigma )\) is defined as:
$$\begin{aligned} s_v(\sigma ):=\overline{\sigma }, \hbox {with}~~ \overline{\sigma }_i = \left\{ \begin{array}{l} \sigma _i-v, ~\hbox {if}~ \sigma _i - v > 0,\\ 0, ~\hbox {otherwise}. \\ \end{array} \right. \end{aligned}$$
 
5
Smooth deformation prior has been used in Aanæs and Kahl (2002), Olsen and Bartoli (2008), Valmadre and Lucey (2012), etc.
 
6
Note that KSTA utilizes a non-linear mapping, which means it is out of the scope of low-order linear combination model. We provide the result mainly for the purpose of benchmarking.
 
7
We compare performance of our method with point trajectory approach (Akhter et al. 2008) and column space fitting method (Gotardo and Martinez 2011c), as other methods such as metric projection (Paladini et al. 2009) works in an alternating way.
 
Literatur
Zurück zum Zitat Aanæs, H., & Kahl, F. (2002). Estimation of deformable structure and motion. In ECCV workshop on vision and modelling of dynamic scenes (pp. 1–4). Aanæs, H., & Kahl, F. (2002). Estimation of deformable structure and motion. In ECCV workshop on vision and modelling of dynamic scenes (pp. 1–4).
Zurück zum Zitat Akhter, I., Sheikh, Y., & Khan, S. (2009). In defense of orthonormality constraints for nonrigid structure from motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1534–1541). Akhter, I., Sheikh, Y., & Khan, S. (2009). In defense of orthonormality constraints for nonrigid structure from motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1534–1541).
Zurück zum Zitat Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2008). Nonrigid structure from motion in trajectory space. In Advances in neural information processing systems (pp. 41–48). Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2008). Nonrigid structure from motion in trajectory space. In Advances in neural information processing systems (pp. 41–48).
Zurück zum Zitat Akhter, I., Simon, T., Khan, S., Matthews, I., & Sheikh, Y. (2012). Bilinear spatiotemporal basis models. ACM Transactions on Graphics, 31(2), 17:1–17:12. doi:10.1145/2159516.2159523. Akhter, I., Simon, T., Khan, S., Matthews, I., & Sheikh, Y. (2012). Bilinear spatiotemporal basis models. ACM Transactions on Graphics, 31(2), 17:1–17:12. doi:10.​1145/​2159516.​2159523.
Zurück zum Zitat Angst, R., & Pollefeys, M. (2012). A unified view on deformable shape factorizations. In Proceedings of the European conference on computer vision (pp. 682–695). doi:10.1007/978-3-642-33783-3_49. Angst, R., & Pollefeys, M. (2012). A unified view on deformable shape factorizations. In Proceedings of the European conference on computer vision (pp. 682–695). doi:10.​1007/​978-3-642-33783-3_​49.
Zurück zum Zitat Angst, R., Zach, C., & Pollefeys, M. (2011). The generalized trace-norm and its application to structure-from-motion problems. In Proceedings of the IEEE international conference on computer vision (pp. 2502–2509). Angst, R., Zach, C., & Pollefeys, M. (2011). The generalized trace-norm and its application to structure-from-motion problems. In Proceedings of the IEEE international conference on computer vision (pp. 2502–2509).
Zurück zum Zitat Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., & Sayd, P. (2008). Coarse-to-fine low-rank structure-from-motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., & Sayd, P. (2008). Coarse-to-fine low-rank structure-from-motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8).
Zurück zum Zitat Brand, M. (2005). A direct method for 3D factorization of nonrigid motion observed in 2D. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 122–128). Brand, M. (2005). A direct method for 3D factorization of nonrigid motion observed in 2D. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 122–128).
Zurück zum Zitat Bregler, C., Hertzmann, A., & Biermann, H. (2000). Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 690–696). Bregler, C., Hertzmann, A., & Biermann, H. (2000). Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 690–696).
Zurück zum Zitat Brunet, F., Hartley, R., Bartoli, A., Navab, N., & Malgouyres, R. (2011). Monocular template-based reconstruction of smooth and inextensible surfaces. In Proceedings of the Asian conference on computer vision (pp. 52–66). doi:10.1007/978-3-642-19318-7_5. Brunet, F., Hartley, R., Bartoli, A., Navab, N., & Malgouyres, R. (2011). Monocular template-based reconstruction of smooth and inextensible surfaces. In Proceedings of the Asian conference on computer vision (pp. 52–66). doi:10.​1007/​978-3-642-19318-7_​5.
Zurück zum Zitat Buchanan, A. M., & Fitzgibbon, A. W. (2005). Damped Newton algorithms for matrix factorization with missing data. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 316–322). doi:10.1109/CVPR.2005.118. Buchanan, A. M., & Fitzgibbon, A. W. (2005). Damped Newton algorithms for matrix factorization with missing data. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 316–322). doi:10.​1109/​CVPR.​2005.​118.
Zurück zum Zitat Cai, J., & Osher, S. (2010). Fast singular value thresholding without singular value decomposition. Technical report, University of California, Los Angeles. Cai, J., & Osher, S. (2010). Fast singular value thresholding without singular value decomposition. Technical report, University of California, Los Angeles.
Zurück zum Zitat Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 11:1–11:37. Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 11:1–11:37.
Zurück zum Zitat Dai, Y., Li, H., & He, M. (2010). Element-wise factorization for n-view projective reconstruction. In Proceedings of the European conference on computer vision (pp. 396–409). Dai, Y., Li, H., & He, M. (2010). Element-wise factorization for n-view projective reconstruction. In Proceedings of the European conference on computer vision (pp. 396–409).
Zurück zum Zitat Dai, Y., Li, H., & He, M. (2012). A simple prior-free method for non-rigid structure-from-motion factorization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2018–2025). doi:10.1109/CVPR.2012.6247905. Dai, Y., Li, H., & He, M. (2012). A simple prior-free method for non-rigid structure-from-motion factorization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2018–2025). doi:10.​1109/​CVPR.​2012.​6247905.
Zurück zum Zitat Dai, Y., Li, H., & He, M. (2013). Projective multiview structure and motion from element-wise factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2238–2251. doi:10.1109/TPAMI.2013.20.CrossRef Dai, Y., Li, H., & He, M. (2013). Projective multiview structure and motion from element-wise factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2238–2251. doi:10.​1109/​TPAMI.​2013.​20.CrossRef
Zurück zum Zitat Del Bue, A. (2008). A factorization approach to structure from motion with shape priors. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). Del Bue, A. (2008). A factorization approach to structure from motion with shape priors. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8).
Zurück zum Zitat Eriksson, A., & van den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the \({L}_1\) norm. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 771–778). Eriksson, A., & van den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the \({L}_1\) norm. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 771–778).
Zurück zum Zitat Fayad, J., Agapito, L., & Del Bue, A. (2010). Piecewise quadratic reconstruction of non-rigid surfaces from monocular sequences. In Proceedings of the European conference on computer vision (pp. 297–310). Fayad, J., Agapito, L., & Del Bue, A. (2010). Piecewise quadratic reconstruction of non-rigid surfaces from monocular sequences. In Proceedings of the European conference on computer vision (pp. 297–310).
Zurück zum Zitat Gotardo, P., & Martinez, A. (2011a). Computing smooth time-trajectories for camera and deformable shape in structure from motion with occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2051–2065. doi:10.1109/TPAMI.2011.50. Gotardo, P., & Martinez, A. (2011a). Computing smooth time-trajectories for camera and deformable shape in structure from motion with occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2051–2065. doi:10.​1109/​TPAMI.​2011.​50.
Zurück zum Zitat Gotardo, P., & Martinez, A. (2011b). Kernel non-rigid structure from motion. In Proceedings of the IEEE international conference on computer vision (pp. 802–809). Gotardo, P., & Martinez, A. (2011b). Kernel non-rigid structure from motion. In Proceedings of the IEEE international conference on computer vision (pp. 802–809).
Zurück zum Zitat Gotardo, P., & Martinez, A. (2011c). Non-rigid structure from motion with complementary rank-3 spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3065–3072). Gotardo, P., & Martinez, A. (2011c). Non-rigid structure from motion with complementary rank-3 spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3065–3072).
Zurück zum Zitat Hartley, R., & Vidal, R. (2008). Perspective nonrigid shape and motion recovery. In Proceedings of the European conference on computer vision (pp. 276–289). Hartley, R., & Vidal, R. (2008). Perspective nonrigid shape and motion recovery. In Proceedings of the European conference on computer vision (pp. 276–289).
Zurück zum Zitat Hartley, R., & Zisserman, A. (2004) Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press. ISBN: 0521540518. Hartley, R., & Zisserman, A. (2004) Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press. ISBN: 0521540518.
Zurück zum Zitat Li, H. (2007). Two-view motion segmentation from linear programming relaxation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). doi:10.1109/CVPR.2007.382975. Li, H. (2007). Two-view motion segmentation from linear programming relaxation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). doi:10.​1109/​CVPR.​2007.​382975.
Zurück zum Zitat Li, H. (2009). Consensus set maximization with guaranteed global optimality for robust geometry estimation. In Proceedings of the IEEE international conference on computer vision (pp. 1074–1080). doi:10.1109/ICCV.2009.5459398. Li, H. (2009). Consensus set maximization with guaranteed global optimality for robust geometry estimation. In Proceedings of the IEEE international conference on computer vision (pp. 1074–1080). doi:10.​1109/​ICCV.​2009.​5459398.
Zurück zum Zitat Li, H. (2010). Multi-view structure computation without explicitly estimating motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2777–2784). doi:10.1109/CVPR.2010.5540005. Li, H. (2010). Multi-view structure computation without explicitly estimating motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2777–2784). doi:10.​1109/​CVPR.​2010.​5540005.
Zurück zum Zitat Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184. doi:10.1109/TPAMI.2012.88.CrossRef Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184. doi:10.​1109/​TPAMI.​2012.​88.CrossRef
Zurück zum Zitat Lladó, X., Bue, A. D., & Agapito, L. (2010). Non-rigid metric reconstruction from perspective cameras. IVC, 28(9), 1339–1353.CrossRef Lladó, X., Bue, A. D., & Agapito, L. (2010). Non-rigid metric reconstruction from perspective cameras. IVC, 28(9), 1339–1353.CrossRef
Zurück zum Zitat Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, Series A, 128(1–2), 321–353.CrossRefMATHMathSciNet Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, Series A, 128(1–2), 321–353.CrossRefMATHMathSciNet
Zurück zum Zitat Paladini, M., Bue, A. D., Stosic, M., Dodig, M., Xavier, J., & Agapito, L. (2009). Factorization for non-rigid and articulated structure using metric projections. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2898–2905). doi:10.1109/CVPRW.2009.5206602. Paladini, M., Bue, A. D., Stosic, M., Dodig, M., Xavier, J., & Agapito, L. (2009). Factorization for non-rigid and articulated structure using metric projections. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2898–2905). doi:10.​1109/​CVPRW.​2009.​5206602.
Zurück zum Zitat Park, H. S., Shiratori, T., Matthews, I., & Sheikh, Y. (2010). 3D reconstruction of a moving point from a series of 2D projections. In Proceedings of the European conference on computer vision (pp. 158–171). Park, H. S., Shiratori, T., Matthews, I., & Sheikh, Y. (2010). 3D reconstruction of a moving point from a series of 2D projections. In Proceedings of the European conference on computer vision (pp. 158–171).
Zurück zum Zitat Rabaud, V., & Belongie, S. (2009). Linear embeddings in non-rigid structure from motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2427–2434). Los Alamitos, CA: IEEE Computer Society. doi:10.1109/CVPRW.2009.5206628. Rabaud, V., & Belongie, S. (2009). Linear embeddings in non-rigid structure from motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2427–2434). Los Alamitos, CA: IEEE Computer Society. doi:10.​1109/​CVPRW.​2009.​5206628.
Zurück zum Zitat Salzmann, M., Moreno-Noguer, F., Lepetit, V., & Fua, P. (2008). Closed-form solution to non-rigid 3D surface registration. In Proceedings of the European conference on computer vision (Vol. 5305, pp. 581–594). doi:10.1007/978-3-540-88693-8_43. Salzmann, M., Moreno-Noguer, F., Lepetit, V., & Fua, P. (2008). Closed-form solution to non-rigid 3D surface registration. In Proceedings of the European conference on computer vision (Vol. 5305, pp. 581–594). doi:10.​1007/​978-3-540-88693-8_​43.
Zurück zum Zitat Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11, 625–653.CrossRefMathSciNet Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11, 625–653.CrossRefMathSciNet
Zurück zum Zitat Tao, M., & Yuan, X. (2011). Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM Journal on Optimization, 21(1), 57–81.CrossRefMATHMathSciNet Tao, M., & Yuan, X. (2011). Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM Journal on Optimization, 21(1), 57–81.CrossRefMATHMathSciNet
Zurück zum Zitat Taylor, J., Jepson, A., & Kutulakos, K. (2010). Non-rigid structure from locally-rigid motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2761–2768). doi:10.1109/CVPR.2010.5540002. Taylor, J., Jepson, A., & Kutulakos, K. (2010). Non-rigid structure from locally-rigid motion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2761–2768). doi:10.​1109/​CVPR.​2010.​5540002.
Zurück zum Zitat Toh, K., Todd, M., & Tutuncu, R. (1999). SDPT3—A Matlab software package for semidefinite programming. Optimization Methods and Software, 11, 545–581. Toh, K., Todd, M., & Tutuncu, R. (1999). SDPT3—A Matlab software package for semidefinite programming. Optimization Methods and Software, 11, 545–581.
Zurück zum Zitat Tomasi, C., & Kanade, T. (1992). Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision, 9(2), 137–154. doi:10.1007/BF00129684.CrossRef Tomasi, C., & Kanade, T. (1992). Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision, 9(2), 137–154. doi:10.​1007/​BF00129684.CrossRef
Zurück zum Zitat Torresani, L., Hertzmann, A., & Bregler, C. (2008). Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5), 878–892.CrossRef Torresani, L., Hertzmann, A., & Bregler, C. (2008). Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5), 878–892.CrossRef
Zurück zum Zitat Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (2000). Bundle adjustment—A modern synthesis. In Proceedings of the international workshop on vision algorithms (pp. 298–372). Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (2000). Bundle adjustment—A modern synthesis. In Proceedings of the international workshop on vision algorithms (pp. 298–372).
Zurück zum Zitat Valmadre, J., & Lucey, S. (2012). General trajectory prior for non-rigid reconstruction. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1394–1401). doi:10.1109/CVPR.2012.6247826. Valmadre, J., & Lucey, S. (2012). General trajectory prior for non-rigid reconstruction. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1394–1401). doi:10.​1109/​CVPR.​2012.​6247826.
Zurück zum Zitat Xiao, J., Chai, J., & Kanade, T. (2004). A closed-form solution to non-rigid shape and motion recovery. In Proceedings of the European conference on computer vision (Vol. 3024, pp. 573–587). doi:10.1007/978-3-540-24673-2-46. Xiao, J., Chai, J., & Kanade, T. (2004). A closed-form solution to non-rigid shape and motion recovery. In Proceedings of the European conference on computer vision (Vol. 3024, pp. 573–587). doi:10.​1007/​978-3-540-24673-2-46.
Zurück zum Zitat Xiao, J., & Kanade, T. (2005). Uncalibrated perspective reconstruction of deformable structures. In Proceedings of the IEEE international conference on computer vision (pp. 1075–1082). doi:10.1109/ICCV.2005.241. Xiao, J., & Kanade, T. (2005). Uncalibrated perspective reconstruction of deformable structures. In Proceedings of the IEEE international conference on computer vision (pp. 1075–1082). doi:10.​1109/​ICCV.​2005.​241.
Zurück zum Zitat Yang, J., & Yuan, X. (2013). Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281), 301–329.CrossRefMATHMathSciNet Yang, J., & Yuan, X. (2013). Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281), 301–329.CrossRefMATHMathSciNet
Zurück zum Zitat Zaheer, A., Akhter, I., Baig, M., Marzban, S., & Khan, S. (2011). Multiview structure from motion in trajectory space. In Proceedings of the IEEE international conference on computer vision (pp 2447–2453). doi:10.1109/ICCV.2011.6126529. Zaheer, A., Akhter, I., Baig, M., Marzban, S., & Khan, S. (2011). Multiview structure from motion in trajectory space. In Proceedings of the IEEE international conference on computer vision (pp 2447–2453). doi:10.​1109/​ICCV.​2011.​6126529.
Metadaten
Titel
A Simple Prior-Free Method for Non-rigid Structure-from-Motion Factorization
verfasst von
Yuchao Dai
Hongdong Li
Mingyi He
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 2/2014
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-013-0684-2

Weitere Artikel der Ausgabe 2/2014

International Journal of Computer Vision 2/2014 Zur Ausgabe