Skip to main content

2022 | OriginalPaper | Buchkapitel

A Study of Algebraic Structures and Logics Based on Categories of Rough Sets

verfasst von : Anuj Kumar More

Erschienen in: Transactions on Rough Sets XXIII

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The theory of rough sets has been studied extensively, both from foundation and application points of view, since its introduction by Pawlak in 1982. On the foundations side, a substantial part of work on rough set theory involves the study of its algebraic aspects and logics. The present work is in this direction, initiated through the study of categories of rough sets.
Starting from two categories RSC and ROUGH of rough sets, it is shown that they are equivalent. Moreover, RSC, and thus ROUGH, are found to be a quasitopos, a structure slightly weaker than topos. The construction is then lifted to a more general set-up to give the category RSC(\(\mathscr {C}\)) with an arbitrary non-degenerate topos \(\mathscr {C}\) serving as a ‘base’, just as sets constitute a base for defining rough sets.
The category-theoretic study gives rise to two directions of work. In one direction of work, a particular example of RSC(\(\mathscr {C}\)) when \(\mathscr {C}\) is the topos of monoid actions on sets is considered. It yields the monoid actions on rough sets and that of transformation semigroups (ts) for rough sets, leading to decomposition results. A semiautomaton for rough sets is also defined.
In the other direction, we incorporate Iwinski’s notion of ‘relative rough complementation’ in the internal algebra of the quasitopos RSC(\(\mathscr {C}\)). This results in the introduction of two new classes of algebraic structures with two negations, namely contrapositionally complemented pseudo-Boolean algebra (ccpBa) and contrapositionally \({\vee }\) complemented pseudo-Boolean algebra (c\(\vee \)cpBa). Examples of ccpBas and c\(\vee \)cpBas are developed, comparison with existing algebras is done and representation theorems are established.
The logics ILM and ILM-\(\vee \) corresponding to ccpBas and c\({\vee }\)cpBas respectively are defined, and different relational semantics are obtained. It is shown that ILM is a proper extension of a variant JP\('\) of Peirce’s logic, defined by Segerberg in 1968. The inter-relationship between relational semantics and the algebraic semantics of ILM and ILM-\({\vee }\) are investigated. Lastly, in the line of Dunn’s study of logics, the two negations are expressed without the help of the connective of implication, and the resulting logical and algebraic structures are also studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Arbib, M.A.: Theories of Abstract Automata. Prentice-Hall, Hoboken (1969)MATH Arbib, M.A.: Theories of Abstract Automata. Prentice-Hall, Hoboken (1969)MATH
2.
Zurück zum Zitat Arbib, M.A., Krohn, K., Rhodes, J.L.: Algebraic Theory of Machines, Languages, and Semigroups. Academic Press, Cambridge (1968) Arbib, M.A., Krohn, K., Rhodes, J.L.: Algebraic Theory of Machines, Languages, and Semigroups. Academic Press, Cambridge (1968)
3.
Zurück zum Zitat Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)MATH Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)MATH
4.
Zurück zum Zitat Banerjee, M., Chakraborty, M.K.: A category for rough sets. Found. Comput. Decis. Sci. 18(3–4), 167–180 (1993)MathSciNetMATH Banerjee, M., Chakraborty, M.K.: A category for rough sets. Found. Comput. Decis. Sci. 18(3–4), 167–180 (1993)MathSciNetMATH
5.
Zurück zum Zitat Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fund. Inform. 28(3–4), 211–221 (1996)MathSciNetMATH Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fund. Inform. 28(3–4), 211–221 (1996)MathSciNetMATH
6.
Zurück zum Zitat Banerjee, M., Chakraborty, M.K.: Foundations of vagueness: a category-theoretic approach. Electron. Notes Theor. Comput. Sci. 82(4), 10–19 (2003)MATHCrossRef Banerjee, M., Chakraborty, M.K.: Foundations of vagueness: a category-theoretic approach. Electron. Notes Theor. Comput. Sci. 82(4), 10–19 (2003)MATHCrossRef
9.
11.
Zurück zum Zitat Bezhanishvili, G., Holliday, W.H.: A semantic hierarchy for intuitionistic logic. Indagationes Mathematicae 30(3), 403–469 (2019)MathSciNetMATHCrossRef Bezhanishvili, G., Holliday, W.H.: A semantic hierarchy for intuitionistic logic. Indagationes Mathematicae 30(3), 403–469 (2019)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (2006) Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (2006)
13.
Zurück zum Zitat Borzooei, R.A., Estaji, A.A., Mobini, M.: On the category of rough sets. Soft. Comput. 21(9), 2201–2214 (2017)MATHCrossRef Borzooei, R.A., Estaji, A.A., Mobini, M.: On the category of rough sets. Soft. Comput. 21(9), 2201–2214 (2017)MATHCrossRef
14.
Zurück zum Zitat Carnielli, W.A., D’Ottaviano, I.M.L.: Translations between logical systems: a manifesto. Logique et Anal. 40(157), 67–81 (1997)MathSciNetMATH Carnielli, W.A., D’Ottaviano, I.M.L.: Translations between logical systems: a manifesto. Logique et Anal. 40(157), 67–81 (1997)MathSciNetMATH
15.
Zurück zum Zitat Cattaneo, G., Giuntini, R., Pilla, R.: BZMV\(^{\rm dM}\) algebras and Stonian MV-algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets Syst. 108(2), 201–222 (1999)MathSciNetMATHCrossRef Cattaneo, G., Giuntini, R., Pilla, R.: BZMV\(^{\rm dM}\) algebras and Stonian MV-algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets Syst. 108(2), 201–222 (1999)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)MATH Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)MATH
18.
Zurück zum Zitat Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956)MATHCrossRef Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956)MATHCrossRef
19.
20.
Zurück zum Zitat Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics, vol. 57. Cambridge University Press, Cambridge (1998) Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics, vol. 57. Cambridge University Press, Cambridge (1998)
21.
Zurück zum Zitat Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. American Mathematical Society, Providence (1961)MATH Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. American Mathematical Society, Providence (1961)MATH
22.
Zurück zum Zitat Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 2. American Mathematical Society, Providence (1961)MATH Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 2. American Mathematical Society, Providence (1961)MATH
23.
Zurück zum Zitat Colacito, A., de Jongh, D., Vargas, A.L.: Subminimal negation. Soft Comput. 21(1), 165–174 (2017)MATHCrossRef Colacito, A., de Jongh, D., Vargas, A.L.: Subminimal negation. Soft Comput. 21(1), 165–174 (2017)MATHCrossRef
24.
Zurück zum Zitat Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)MATHCrossRef Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)MATHCrossRef
26.
Zurück zum Zitat Diker, M.: A category approach to relation preserving functions in rough set theory. Int. J. Approx. Reason. 56, 71–86 (2015)MathSciNetMATHCrossRef Diker, M.: A category approach to relation preserving functions in rough set theory. Int. J. Approx. Reason. 56, 71–86 (2015)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 31–51. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0018431CrossRef Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 31–51. Springer, Heidelberg (1991). https://​doi.​org/​10.​1007/​BFb0018431CrossRef
30.
Zurück zum Zitat Dunn, J.M.: Star and perp: two treatments of negation. Philos. Perspect. 7, 331–357 (1993)CrossRef Dunn, J.M.: Star and perp: two treatments of negation. Philos. Perspect. 7, 331–357 (1993)CrossRef
32.
Zurück zum Zitat Dunn, J.M.: Generalized ortho negation. In: Wansing, H. (ed.) Negation: A Notion in Focus, pp. 3–26. W. De Gruyter, Berlin (1996)CrossRef Dunn, J.M.: Generalized ortho negation. In: Wansing, H. (ed.) Negation: A Notion in Focus, pp. 3–26. W. De Gruyter, Berlin (1996)CrossRef
34.
Zurück zum Zitat Eilenberg, S., Tilson, B.: Automata, Languages, and Machines. Volume B. Pure & Applied Mathematics. Academic Press, Cambridge (1976) Eilenberg, S., Tilson, B.: Automata, Languages, and Machines. Volume B. Pure & Applied Mathematics. Academic Press, Cambridge (1976)
36.
Zurück zum Zitat Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39(2), 103–124 (2000)MathSciNetMATHCrossRef Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39(2), 103–124 (2000)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Ferreira, G., Oliva, P.: On the relation between various negative translations. In: Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 227–258. Ontos Verlag, Heusenstamm (2012) Ferreira, G., Oliva, P.: On the relation between various negative translations. In: Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 227–258. Ontos Verlag, Heusenstamm (2012)
38.
Zurück zum Zitat Fu, T.K., Kutz, O.: The analysis and synthesis of logic translation. In: FLAIRS Conference (2012) Fu, T.K., Kutz, O.: The analysis and synthesis of logic translation. In: FLAIRS Conference (2012)
39.
Zurück zum Zitat Geisler, J., Nowak, M.: Conditional negation on the positive logic. Bull. Sect. Logic 23(3), 130–136 (1994)MathSciNetMATH Geisler, J., Nowak, M.: Conditional negation on the positive logic. Bull. Sect. Logic 23(3), 130–136 (1994)MathSciNetMATH
40.
Zurück zum Zitat Ginsburg, S.: Some remarks on abstract machines. Trans. Am. Math. Soc. 96(3), 400–444 (1960)MATHCrossRef Ginsburg, S.: Some remarks on abstract machines. Trans. Am. Math. Soc. 96(3), 400–444 (1960)MATHCrossRef
41.
Zurück zum Zitat Goguen, J.A.: Concept representation in natural and artificial languages: axioms, extensions and applications for fuzzy sets. Int. J. Man Mach. Stud. 6(5), 513–561 (1974)MathSciNetMATHCrossRef Goguen, J.A.: Concept representation in natural and artificial languages: axioms, extensions and applications for fuzzy sets. Int. J. Man Mach. Stud. 6(5), 513–561 (1974)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Goldblatt, R.I.: Topoi: The Categorial Analysis of Logic. Dover Books on Mathematics. Dover Publications, Mineola (2006) Goldblatt, R.I.: Topoi: The Categorial Analysis of Logic. Dover Books on Mathematics. Dover Publications, Mineola (2006)
46.
Zurück zum Zitat Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press, Cambridge (1982)MATHCrossRef Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press, Cambridge (1982)MATHCrossRef
47.
Zurück zum Zitat Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson/Addison Wesley, Reading (2007) Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson/Addison Wesley, Reading (2007)
48.
Zurück zum Zitat Iwiński, T.B.: Algebraic approach to rough sets. Bull. Polish Acad. Sci. Math. 35, 673–683 (1987)MathSciNetMATH Iwiński, T.B.: Algebraic approach to rough sets. Bull. Polish Acad. Sci. Math. 35, 673–683 (1987)MathSciNetMATH
49.
Zurück zum Zitat Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Math. 4, 119–136 (1937)MathSciNetMATH Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Math. 4, 119–136 (1937)MathSciNetMATH
50.
Zurück zum Zitat Johnstone, P.T.: Stone Spaces, vol. 3. Cambridge University Press, Cambridge (1986)MATH Johnstone, P.T.: Stone Spaces, vol. 3. Cambridge University Press, Cambridge (1986)MATH
51.
Zurück zum Zitat Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2. Oxford University Press, Oxford (2002)MATH Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2. Oxford University Press, Oxford (2002)MATH
53.
Zurück zum Zitat Kiszka, J.B., Gupta, M.M., Trojan, G.M.: Multivariable fuzzy controller under Gödel’s implication. Fuzzy Sets Syst. 34(3), 301–321 (1990)CrossRef Kiszka, J.B., Gupta, M.M., Trojan, G.M.: Multivariable fuzzy controller under Gödel’s implication. Fuzzy Sets Syst. 34(3), 301–321 (1990)CrossRef
54.
Zurück zum Zitat Kripke, S.A.: Semantical analysis of modal logic. I. Normal modal propositional calculi. Z. Math. Logik Grundlagen Math. 9, 67–96 (1963) Kripke, S.A.: Semantical analysis of modal logic. I. Normal modal propositional calculi. Z. Math. Logik Grundlagen Math. 9, 67–96 (1963)
55.
Zurück zum Zitat Kripke, S.A.: Semantical analysis of intuitionistic logic. I. In: Formal Systems and Recursive Functions (Proceedings of the Eighth Logic Colloquium, Oxford, 1963), pp. 92–130. North-Holland, Amsterdam (1965) Kripke, S.A.: Semantical analysis of intuitionistic logic. I. In: Formal Systems and Recursive Functions (Proceedings of the Eighth Logic Colloquium, Oxford, 1963), pp. 92–130. North-Holland, Amsterdam (1965)
56.
Zurück zum Zitat Kumar, A., Banerjee, M.: Kleene algebras and logic: boolean and rough set representations, 3-valued, rough set and perp semantics. Stud. Logica. 105(3), 439–469 (2017)MathSciNetMATHCrossRef Kumar, A., Banerjee, M.: Kleene algebras and logic: boolean and rough set representations, 3-valued, rough set and perp semantics. Stud. Logica. 105(3), 439–469 (2017)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Li, X.S., Yuan, X.H.: The category \({RSC}\) of \({I}\)-rough sets. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 448–452 (2008) Li, X.S., Yuan, X.H.: The category \({RSC}\) of \({I}\)-rough sets. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 448–452 (2008)
58.
Zurück zum Zitat Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)CrossRef Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)CrossRef
59.
Zurück zum Zitat Linton, S.A., Pfeiffer, G., Robertson, E.F., Ruškuc, N.: Groups and actions in transformation semigroups. Math. Z. 228(3), 435–450 (1998)MathSciNetMATHCrossRef Linton, S.A., Pfeiffer, G., Robertson, E.F., Ruškuc, N.: Groups and actions in transformation semigroups. Math. Z. 228(3), 435–450 (1998)MathSciNetMATHCrossRef
60.
Zurück zum Zitat Lu, J., Li, S.-G., Yang, X.-F., Fu, W.-Q.: Categorical properties of \(M\)-indiscernibility spaces. Theoret. Comput. Sci. 412(42), 5902–5908 (2011)MathSciNetMATHCrossRef Lu, J., Li, S.-G., Yang, X.-F., Fu, W.-Q.: Categorical properties of \(M\)-indiscernibility spaces. Theoret. Comput. Sci. 412(42), 5902–5908 (2011)MathSciNetMATHCrossRef
61.
Zurück zum Zitat Mikolajczak, B.: Algebraic and Structural Automata Theory, vol. 44. Elsevier, Amsterdam (1991)MATH Mikolajczak, B.: Algebraic and Structural Automata Theory, vol. 44. Elsevier, Amsterdam (1991)MATH
63.
Zurück zum Zitat More, A.K., Banerjee, M.: Categories and algebras from rough sets: new facets. Fund. Inform. 148(1–2), 173–190 (2016)MathSciNetMATH More, A.K., Banerjee, M.: Categories and algebras from rough sets: new facets. Fund. Inform. 148(1–2), 173–190 (2016)MathSciNetMATH
66.
Zurück zum Zitat Munkres, J.R.: Topology. Prentice Hall, Hoboken (2000)MATH Munkres, J.R.: Topology. Prentice Hall, Hoboken (2000)MATH
68.
Zurück zum Zitat Nowak, M.: The weakest logic of conditional negation. Bull. Sect. Logic 24(4), 201–205 (1995)MathSciNetMATH Nowak, M.: The weakest logic of conditional negation. Bull. Sect. Logic 24(4), 201–205 (1995)MathSciNetMATH
69.
70.
74.
Zurück zum Zitat Prawitz, D., Malmnäs, P.E.: A survey of some connections between classical, intuitionistic and minimal logic. Stud. Logic Found. Math. 50, 215–229 (1968)MathSciNetMATHCrossRef Prawitz, D., Malmnäs, P.E.: A survey of some connections between classical, intuitionistic and minimal logic. Stud. Logic Found. Math. 50, 215–229 (1968)MathSciNetMATHCrossRef
75.
Zurück zum Zitat Rasiowa, H.: An Algebraic Approach to Non-classical Logics. Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam (1974)MATH Rasiowa, H.: An Algebraic Approach to Non-classical Logics. Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam (1974)MATH
78.
79.
Zurück zum Zitat Sharan, S., Srivastava, A.K., Tiwari, S.P.: Characterizations of rough finite state automata. Int. J. Mach. Learn. Cybern. 8(3), 721–730 (2017)CrossRef Sharan, S., Srivastava, A.K., Tiwari, S.P.: Characterizations of rough finite state automata. Int. J. Mach. Learn. Cybern. 8(3), 721–730 (2017)CrossRef
80.
Zurück zum Zitat Shramko, Y.: Dual intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Logica. 80(2–3), 347–367 (2005)MathSciNetMATHCrossRef Shramko, Y.: Dual intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Logica. 80(2–3), 347–367 (2005)MathSciNetMATHCrossRef
82.
Zurück zum Zitat Tiwari, S.P., Sharan, S., Singh, A.K.: On coverings of products of rough transformation semigroups. Int. J. Found. Comput. Sci. 24(03), 375–391 (2013)MathSciNetMATHCrossRef Tiwari, S.P., Sharan, S., Singh, A.K.: On coverings of products of rough transformation semigroups. Int. J. Found. Comput. Sci. 24(03), 375–391 (2013)MathSciNetMATHCrossRef
83.
Zurück zum Zitat Tripathy, B.K., Acharjya, D.P., Cynthya, V.: A framework for intelligent medical diagnosis using rough set with formal concept analysis. Int. J. Artif. Intell. Appl. 2(2), 45–66 (2011) Tripathy, B.K., Acharjya, D.P., Cynthya, V.: A framework for intelligent medical diagnosis using rough set with formal concept analysis. Int. J. Artif. Intell. Appl. 2(2), 45–66 (2011)
84.
Zurück zum Zitat Vakarelov, D.: Notes on \({\cal{N} }\)-lattices and constructive logic with strong negation. Studia Logica 36(1–2), 109–125 (1977)MathSciNetMATHCrossRef Vakarelov, D.: Notes on \({\cal{N} }\)-lattices and constructive logic with strong negation. Studia Logica 36(1–2), 109–125 (1977)MathSciNetMATHCrossRef
85.
Zurück zum Zitat Vakarelov, D.: Consistency, completeness and negation. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 328–369. Philosophia Verlag, Munich (1989)CrossRef Vakarelov, D.: Consistency, completeness and negation. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 328–369. Philosophia Verlag, Munich (1989)CrossRef
86.
Zurück zum Zitat Vakarelov, D.: Nelson’s negation on the base of weaker versions of intuitionistic negation. Stud. Logica. 80(2–3), 393–430 (2005)MathSciNetMATHCrossRef Vakarelov, D.: Nelson’s negation on the base of weaker versions of intuitionistic negation. Stud. Logica. 80(2–3), 393–430 (2005)MathSciNetMATHCrossRef
87.
88.
Metadaten
Titel
A Study of Algebraic Structures and Logics Based on Categories of Rough Sets
verfasst von
Anuj Kumar More
Copyright-Jahr
2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-66544-2_9

Premium Partner