Skip to main content
Erschienen in: Journal of Materials Science 7/2017

08.12.2016 | Original Paper

A study on the interaction between molybdenum disulfide and rhodamine B by spectroscopic methods

verfasst von: Jyoti Shakya, Harekrushna Sahoo, Tanuja Mohanty

Erschienen in: Journal of Materials Science | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work reports the confluence of static and dynamic fluorescence quenching of rhodamine B (RhB) by chemically exfoliated molybdenum disulfide (MoS2) nanosheets. Both steady state and time-resolved fluorescence quenching measurements were carried out to elucidate the process of energy transfer from RhB to MoS2. The interactive forces investigated through evaluation of thermodynamic parameters from temperature dependent fluorescence measurements are found to be hydrophobic in nature. The negative value of Gibbs free energy (∆G) indicates spontaneity of the adsorption process of RhB–MoS2 system. The binding affinity of RhB–MoS2 system is also investigated using UV/Vis spectrophotometer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang QH, Kourosh KZ, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two dimensional transition metal dichalchogenides. Nat Nanotechnol 7:699–712CrossRef Wang QH, Kourosh KZ, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two dimensional transition metal dichalchogenides. Nat Nanotechnol 7:699–712CrossRef
2.
Zurück zum Zitat Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRef Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRef
3.
Zurück zum Zitat Rao CNR, Ramakrishna Matte HSS, Maitra U (2013) Graphene analogues of inorganic layered materials. Angew Chem Int Ed 52:13162–13185CrossRef Rao CNR, Ramakrishna Matte HSS, Maitra U (2013) Graphene analogues of inorganic layered materials. Angew Chem Int Ed 52:13162–13185CrossRef
4.
Zurück zum Zitat Stengl V, Henych J, Slusna M, Ecorchard P (2014) Ultrasound exfoliation of inorganic analogues of graphene. Nanoscale Res Lett 9:1–14CrossRef Stengl V, Henych J, Slusna M, Ecorchard P (2014) Ultrasound exfoliation of inorganic analogues of graphene. Nanoscale Res Lett 9:1–14CrossRef
5.
Zurück zum Zitat Shakya J, Patel AS, Singh F, Mohanty T (2016) Composition dependent fermi level shifting of Au decorated MoS2 nanosheets. Appl Phys Lett 108:013103CrossRef Shakya J, Patel AS, Singh F, Mohanty T (2016) Composition dependent fermi level shifting of Au decorated MoS2 nanosheets. Appl Phys Lett 108:013103CrossRef
6.
Zurück zum Zitat Huang W, Da H, Liang G (2013) Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. J Appl Phys 113:104304CrossRef Huang W, Da H, Liang G (2013) Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. J Appl Phys 113:104304CrossRef
7.
Zurück zum Zitat Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef
8.
Zurück zum Zitat Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct gap semiconductor. Phys Rev Lett 105:136805CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct gap semiconductor. Phys Rev Lett 105:136805CrossRef
9.
Zurück zum Zitat Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single layer MoS2 transistors. Nat Technol 6:147–150 Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single layer MoS2 transistors. Nat Technol 6:147–150
10.
Zurück zum Zitat Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRef Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRef
11.
Zurück zum Zitat Huang Y, Guo J, Kang Y, Ai Y, Li CM (2015) Two dimensional atomically thin MoS2 nanosheets and their sensing application. Nanoscale 7:19358–19376CrossRef Huang Y, Guo J, Kang Y, Ai Y, Li CM (2015) Two dimensional atomically thin MoS2 nanosheets and their sensing application. Nanoscale 7:19358–19376CrossRef
12.
Zurück zum Zitat Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7:209–231CrossRef Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7:209–231CrossRef
13.
Zurück zum Zitat Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single layer MoS2 based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRef Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single layer MoS2 based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRef
14.
Zurück zum Zitat Li F, Huang Y, Yang Q, Zhong ZT, Li D, Wang LH, Song SP, Fan CH (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026CrossRef Li F, Huang Y, Yang Q, Zhong ZT, Li D, Wang LH, Song SP, Fan CH (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026CrossRef
15.
Zurück zum Zitat Lu CH, Li J, Liu JJ, Yang HH, Chen X, Chen GN (2010) Increasing the sensitivity and single base mismatch selectivity of the molecular beacon using graphene oxide as the nano quencher. Chem Eur J 16:4889–4894CrossRef Lu CH, Li J, Liu JJ, Yang HH, Chen X, Chen GN (2010) Increasing the sensitivity and single base mismatch selectivity of the molecular beacon using graphene oxide as the nano quencher. Chem Eur J 16:4889–4894CrossRef
16.
Zurück zum Zitat Deokar G, Vignaud D, Arenal R, Louette P, Colomer JF (2016) Synthesis and characterization of MoS2 nanosheets. Nanotechnology 27:075604CrossRef Deokar G, Vignaud D, Arenal R, Louette P, Colomer JF (2016) Synthesis and characterization of MoS2 nanosheets. Nanotechnology 27:075604CrossRef
17.
Zurück zum Zitat Imanishi N, Toyoda M, Takeda Y, Yamamoto O (1992) Study on lithium intercalation into MoS2. Solid State Ion 58:333–338CrossRef Imanishi N, Toyoda M, Takeda Y, Yamamoto O (1992) Study on lithium intercalation into MoS2. Solid State Ion 58:333–338CrossRef
18.
Zurück zum Zitat Nguyen EP, Carey BJ, Daeneke T, Ou JZ, Latham K, Zhuiykov S, Zadeh KK (2015) Investigation of two solvent grinding—assisted liquid phase exfoliation of layered MoS2. Chem Mater 27:53–59CrossRef Nguyen EP, Carey BJ, Daeneke T, Ou JZ, Latham K, Zhuiykov S, Zadeh KK (2015) Investigation of two solvent grinding—assisted liquid phase exfoliation of layered MoS2. Chem Mater 27:53–59CrossRef
19.
Zurück zum Zitat Chen W, Zhao J, Zhang J et al (2015) Oxygen-assisted chemical vapor deposition growth of large single crystal high quality monolayer MoS2. J Am Chem Soc 137(50):15632–15635CrossRef Chen W, Zhao J, Zhang J et al (2015) Oxygen-assisted chemical vapor deposition growth of large single crystal high quality monolayer MoS2. J Am Chem Soc 137(50):15632–15635CrossRef
20.
Zurück zum Zitat Liu Y, Liu CY, Liu Y (2011) Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl Surf Sci 257:5513–5518CrossRef Liu Y, Liu CY, Liu Y (2011) Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl Surf Sci 257:5513–5518CrossRef
21.
Zurück zum Zitat Dulkeith E, Morteani AC, Niedereichholz KTA, Feldmann J (2015) Fluorescence quenching of dye molecules near gold nanoparticles : radiative and non-radiative effects. Phys Rev Lett 89(20):203002CrossRef Dulkeith E, Morteani AC, Niedereichholz KTA, Feldmann J (2015) Fluorescence quenching of dye molecules near gold nanoparticles : radiative and non-radiative effects. Phys Rev Lett 89(20):203002CrossRef
22.
Zurück zum Zitat Lakowicz J R (ed) (2013) Principles of fluorescence spectroscopy. Springer, New York, p 243 Lakowicz J R (ed) (2013) Principles of fluorescence spectroscopy. Springer, New York, p 243
23.
Zurück zum Zitat Deng H, Yang X, Gao Z (2015) MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst 104(9):3210–3215CrossRef Deng H, Yang X, Gao Z (2015) MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst 104(9):3210–3215CrossRef
24.
Zurück zum Zitat Bright FV, Munson CA (2003) Time resolved fluorescence spectroscopy for illuminating complex systems. Anal Chim Acta 500:71–104CrossRef Bright FV, Munson CA (2003) Time resolved fluorescence spectroscopy for illuminating complex systems. Anal Chim Acta 500:71–104CrossRef
25.
Zurück zum Zitat Bakkialakshmi Selvarani P, Chenthamarai S (2013) Fluorescence quenching of rhodamine B base by two amines. Spectrochim Acta Part A 105:557–562CrossRef Bakkialakshmi Selvarani P, Chenthamarai S (2013) Fluorescence quenching of rhodamine B base by two amines. Spectrochim Acta Part A 105:557–562CrossRef
26.
Zurück zum Zitat Ahmad A, Kurkina T, Kern K, Balasubramanian K (2009) Applications of the static quenching of rhodamine B by carbon nanotubes. Chem Phys Chem 10:2251–2255 Ahmad A, Kurkina T, Kern K, Balasubramanian K (2009) Applications of the static quenching of rhodamine B by carbon nanotubes. Chem Phys Chem 10:2251–2255
27.
Zurück zum Zitat Behabtu N, Lomeda JR, Green MJ et al (2010) Spontaneous high concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef Behabtu N, Lomeda JR, Green MJ et al (2010) Spontaneous high concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef
28.
Zurück zum Zitat Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef
29.
Zurück zum Zitat Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D, Lu H (2014) Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chem Commun 50:15936–15939CrossRef Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D, Lu H (2014) Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chem Commun 50:15936–15939CrossRef
30.
Zurück zum Zitat Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargea D (2012) From bulk to monolayer MoS2: evalution of raman scattering. Adv Funct Mater 22:1385–1390CrossRef Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargea D (2012) From bulk to monolayer MoS2: evalution of raman scattering. Adv Funct Mater 22:1385–1390CrossRef
31.
Zurück zum Zitat Shi Y, Huang JK, Jin L, Hsu YT, Yu SF, Li LJ, Yang HY (2013) Selective decoration of Au nanoparticles on monolayer MoS2 single crystal. Sci Rep 3:1839 Shi Y, Huang JK, Jin L, Hsu YT, Yu SF, Li LJ, Yang HY (2013) Selective decoration of Au nanoparticles on monolayer MoS2 single crystal. Sci Rep 3:1839
32.
Zurück zum Zitat Bozkurt E, Acar M, Onganer Y, Meral K (2014) Rhodamine 101-graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101. Phys Chem Chem Phys 16:18276–18281CrossRef Bozkurt E, Acar M, Onganer Y, Meral K (2014) Rhodamine 101-graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101. Phys Chem Chem Phys 16:18276–18281CrossRef
33.
Zurück zum Zitat Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRef Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRef
34.
Zurück zum Zitat Jhonsi MA, Nithya C, Kathiravan A (2014) Probing electron transfer dynamics of pyranine with reduced graphene oxide. Phys Chem Chem Phys 16:20878–20886CrossRef Jhonsi MA, Nithya C, Kathiravan A (2014) Probing electron transfer dynamics of pyranine with reduced graphene oxide. Phys Chem Chem Phys 16:20878–20886CrossRef
35.
Zurück zum Zitat Huang J, Ye L, Gao X, Li H, Xu J, Li Z (2015) Molybdenum disulfide based amplified fluorescence DNA detection using hybridization chain reaction. J Mater Chem B 3:2395–2401CrossRef Huang J, Ye L, Gao X, Li H, Xu J, Li Z (2015) Molybdenum disulfide based amplified fluorescence DNA detection using hybridization chain reaction. J Mater Chem B 3:2395–2401CrossRef
36.
Zurück zum Zitat Zhang XF, Li F (2012) Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence. J Photochem Photobiol, A 246:8–15CrossRef Zhang XF, Li F (2012) Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence. J Photochem Photobiol, A 246:8–15CrossRef
37.
Zurück zum Zitat Rehman DS, Deb S, Ghosh SK (2015) Relativity of electron and energy transfer contributions in nanoparticle induced fluorescence quenching. J Phys Chem C 119:27145–27155CrossRef Rehman DS, Deb S, Ghosh SK (2015) Relativity of electron and energy transfer contributions in nanoparticle induced fluorescence quenching. J Phys Chem C 119:27145–27155CrossRef
38.
Zurück zum Zitat Sen T, Patra A (2008) Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. J Phys Chem C 112(9):3216–3222CrossRef Sen T, Patra A (2008) Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. J Phys Chem C 112(9):3216–3222CrossRef
39.
Zurück zum Zitat Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703CrossRef Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703CrossRef
40.
Zurück zum Zitat Patel AS, Sahoo H, Mohanty T (2014) Probing the Foster resonance energy transfer between fluorescent copper nanoclusters and cobalt complex. Appl Phys Lett 105:063112CrossRef Patel AS, Sahoo H, Mohanty T (2014) Probing the Foster resonance energy transfer between fluorescent copper nanoclusters and cobalt complex. Appl Phys Lett 105:063112CrossRef
42.
Zurück zum Zitat Prins F, Goodman AJ, Tisdale WA (2014) Reduced dielectric screening and enhanced transfer in single and few layer MoS2. Nano Lett 14:6087–6091CrossRef Prins F, Goodman AJ, Tisdale WA (2014) Reduced dielectric screening and enhanced transfer in single and few layer MoS2. Nano Lett 14:6087–6091CrossRef
43.
Zurück zum Zitat Jennings TL, Singh MP, Strouse GF (2006) Fluorescence life time quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128:5462–5467CrossRef Jennings TL, Singh MP, Strouse GF (2006) Fluorescence life time quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128:5462–5467CrossRef
44.
Zurück zum Zitat Naghibi H, Tamura A, Sturtevant JM (1995) Significant discrepancies between Van’t Hoff and calorimetric enthalpies. Proc Natl Acad Sci 92:5597–5599CrossRef Naghibi H, Tamura A, Sturtevant JM (1995) Significant discrepancies between Van’t Hoff and calorimetric enthalpies. Proc Natl Acad Sci 92:5597–5599CrossRef
45.
Zurück zum Zitat Sharma P, Das MR (2013) Removal of cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 58:151–158CrossRef Sharma P, Das MR (2013) Removal of cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 58:151–158CrossRef
46.
Zurück zum Zitat Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159CrossRef Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159CrossRef
Metadaten
Titel
A study on the interaction between molybdenum disulfide and rhodamine B by spectroscopic methods
verfasst von
Jyoti Shakya
Harekrushna Sahoo
Tanuja Mohanty
Publikationsdatum
08.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0640-y

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Science 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.