Skip to main content
Erschienen in: Automatic Control and Computer Sciences 8/2020

01.12.2020

A Survey of Mathematical Methods for Security Analysis of Cyberphysical Systems

verfasst von: A. D. Fatin, E. Yu. Pavlenko, M. A. Poltavtseva

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper provides a detailed survey of various mathematical methods for security analysis of a new type of complex systems – cyberphysical systems, as well as digital production and digital economy systems. Considered methods are divided into three classes: methods for security assessment, methods for detecting cyber attacks and methods for analyzing the state of complex systems.
Literatur
1.
Zurück zum Zitat Lavrova, D., Poltavtseva, M., and Shtyrkina, A., Security analysis of cyber-physical systems network infrastructure, 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018, pp. 818–823. Lavrova, D., Poltavtseva, M., and Shtyrkina, A., Security analysis of cyber-physical systems network infrastructure, 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018, pp. 818–823.
2.
Zurück zum Zitat Stepanova, T., Pechenkin, A., and Lavrova, D., Ontology-based big data approach to automated penetration testing of large-scale heterogeneous systems, Proceedings of the 8th International Conference on Security of Information and Networks, 2015, pp. 142–149. Stepanova, T., Pechenkin, A., and Lavrova, D., Ontology-based big data approach to automated penetration testing of large-scale heterogeneous systems, Proceedings of the 8th International Conference on Security of Information and Networks, 2015, pp. 142–149.
3.
Zurück zum Zitat Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.CrossRef Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.CrossRef
4.
Zurück zum Zitat Zegzhda, D., Lavrova, D., and Khushkeev, A., Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series, 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 2019, pp. 780–784. Zegzhda, D., Lavrova, D., and Khushkeev, A., Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series, 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 2019, pp. 780–784.
5.
Zurück zum Zitat Zegzhda, D., Lavrova, D., and Poltavtseva, M., Multifractal security analysis of cyberphysical systems, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 2, pp. 196–204. Zegzhda, D., Lavrova, D., and Poltavtseva, M., Multifractal security analysis of cyberphysical systems, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 2, pp. 196–204.
6.
Zurück zum Zitat Moreno, G., et al., Multifractal analysis of soil surface roughness, Vadose Zone J., 2007, vol. 7, no. 2, pp. 512–520.CrossRef Moreno, G., et al., Multifractal analysis of soil surface roughness, Vadose Zone J., 2007, vol. 7, no. 2, pp. 512–520.CrossRef
7.
Zurück zum Zitat Kirichenko, L.O., Comparative multifractal analysis of time series by the methods of detrended fluctuation analysis and maximums of the wavelet transform modules, Autom. Control Syst. Autom. Devices, 2011, no. 157, pp. 66–77. Kirichenko, L.O., Comparative multifractal analysis of time series by the methods of detrended fluctuation analysis and maximums of the wavelet transform modules, Autom. Control Syst. Autom. Devices, 2011, no. 157, pp. 66–77.
8.
Zurück zum Zitat Lavrova, D.S., Alekseev, I.V., and Shtyrkina, A.A., Security analysis based on controlling dependences of network traffic parameters by wavelet transformation, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 9–15. Lavrova, D.S., Alekseev, I.V., and Shtyrkina, A.A., Security analysis based on controlling dependences of network traffic parameters by wavelet transformation, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 9–15.
9.
Zurück zum Zitat Sheluhin, O.I. and Atayero, A.A., Detection of DoS and DDoS attacks in information communication networks with discrete wavelet analysis, Int. J. Comput. Sci. Inf. Secur., 2012, vol. 10, no. 1, p. 53. Sheluhin, O.I. and Atayero, A.A., Detection of DoS and DDoS attacks in information communication networks with discrete wavelet analysis, Int. J. Comput. Sci. Inf. Secur., 2012, vol. 10, no. 1, p. 53.
10.
Zurück zum Zitat Lavrova, D.S., Forecasting the state of components of smart grids for early detection of cyberattacks, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 1023–1025.CrossRef Lavrova, D.S., Forecasting the state of components of smart grids for early detection of cyberattacks, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 1023–1025.CrossRef
11.
Zurück zum Zitat Kalman, R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., 1960, vol. 82, no. 1, pp. 35–45.MathSciNetCrossRef Kalman, R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., 1960, vol. 82, no. 1, pp. 35–45.MathSciNetCrossRef
12.
Zurück zum Zitat Lavrova, D.S., Zaitseva, E.A., and Zegzhda, D.P., Approach to presenting network infrastructure of cyberphysical systems to minimize the cyberattack neutralization time, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 387–392.CrossRef Lavrova, D.S., Zaitseva, E.A., and Zegzhda, D.P., Approach to presenting network infrastructure of cyberphysical systems to minimize the cyberattack neutralization time, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 387–392.CrossRef
13.
Zurück zum Zitat Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 673–681.CrossRef Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 673–681.CrossRef
14.
Zurück zum Zitat Pavlenko, E.Yu., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.CrossRef Pavlenko, E.Yu., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.CrossRef
15.
Zurück zum Zitat Zegzhda, P., Zegzhda, D., Pavlenko, E., and Dremov, A., Detecting Android application malicious behaviors based on the analysis of control flows and data flows, Proceedings of the 10th International Conference on Security of Information and Networks, 2017, pp. 280–283. Zegzhda, P., Zegzhda, D., Pavlenko, E., and Dremov, A., Detecting Android application malicious behaviors based on the analysis of control flows and data flows, Proceedings of the 10th International Conference on Security of Information and Networks, 2017, pp. 280–283.
Metadaten
Titel
A Survey of Mathematical Methods for Security Analysis of Cyberphysical Systems
verfasst von
A. D. Fatin
E. Yu. Pavlenko
M. A. Poltavtseva
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 8/2020
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S014641162008012X

Weitere Artikel der Ausgabe 8/2020

Automatic Control and Computer Sciences 8/2020 Zur Ausgabe

Neuer Inhalt