Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 2/2012

01.02.2012 | LCA IN TRANSPORTATION

A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites

verfasst von: Peter Stasinopoulos, Paul Compston, Barry Newell, Haley M. Jones

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The purpose of this paper is to take steps towards a life cycle assessment that is able to account for changes over time in resource flows and environmental impacts. The majority of life cycle inventory (LCI) studies assume that computation parameters are constants or fixed functions of time. This assumption limits the opportunities to account for temporal effects because it precludes consideration of the dynamics of the product system.

Methods

System dynamics methods are used in a consequential, fleet-based LCI that accounts for some aspects of the dynamics of the wider system. The LCI model compares the life-cycle energy consumption of car body-in-whites (BIWs) in Australia made from steel and aluminium. It incorporates two dynamic processes: the flow of BIWs into and out of the fleet, and the recycling of aluminium from end-of-life BIWs back into new BIW production. The dynamical model computes both product-based and fleet-based estimates.

Results and discussion

The product-based computations suggest that an aluminium BIW consumes less energy than a steel BIW over a single life cycle. The fleet-based computations suggest that the energy benefits of aluminium BIWs do not begin to emerge for some time. The substitution of aluminium for steel is a low-leverage intervention that changes the values of a few parameters of the system. The system has a delayed, damped response to this intervention because the large stock of BIWs is a source of high inertia, and the long useful life leads to a slow decay of steel BIWs out of the fleet. The recycling of aluminium back into BIW production is a moderate-leverage intervention that initially strengthens a reinforcing feedback loop, driving a rapid accumulation of energy benefits. Dominance then shifts to a balancing loop, slowing the accumulation of energy benefits. Both interventions result in a measureable reduction in life-cycle energy consumption, but only temporarily divert the underlying growth trend.

Conclusions

The results suggest that product-based LCIs overestimate the short-term energy benefits of aluminium by not accounting for the time required for the stock of preexisting steel components to decay out of the fleet, and underestimate the long-term energy benefits of aluminium components by not accounting for changes in the availability of recycled aluminium. The results also suggest that interventions such as lightweighting and other efficiency measures alone can slow the growth of energy consumption, but are probably inadequate to achieve sustainable energy consumption levels if the fleet is large.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Australian Automotive Intelligence (2010) Australian Automotive Intelligence Yearbook 2010, 9th edn. Australian Automotive Intelligence, Melbourne Australian Automotive Intelligence (2010) Australian Automotive Intelligence Yearbook 2010, 9th edn. Australian Automotive Intelligence, Melbourne
Zurück zum Zitat Australian Bureau of Statistics (2008) 3222.0–Population projections, Australia, 2006 to 2101. Commonwealth of Australia, Canberra Australian Bureau of Statistics (2008) 3222.0–Population projections, Australia, 2006 to 2101. Commonwealth of Australia, Canberra
Zurück zum Zitat Australian Bureau of Statistics (2011) 9390.0–Motor vehicle census. Commonwealth of Australia, Canberra Australian Bureau of Statistics (2011) 9390.0–Motor vehicle census. Commonwealth of Australia, Canberra
Zurück zum Zitat Bertram M, Buxmann K, Furrer P (2009) Analysis of greenhouse gas emissions related to aluminium transport applications. Int J Life Cycle Assess 14(Suppl 1):S62–S69CrossRef Bertram M, Buxmann K, Furrer P (2009) Analysis of greenhouse gas emissions related to aluminium transport applications. Int J Life Cycle Assess 14(Suppl 1):S62–S69CrossRef
Zurück zum Zitat Buxman K (1994) Ecological aspects of the use of aluminium in cars, with particular regard to recycling techniques. Resour Conserv Recycl 10(1–2):17–23CrossRef Buxman K (1994) Ecological aspects of the use of aluminium in cars, with particular regard to recycling techniques. Resour Conserv Recycl 10(1–2):17–23CrossRef
Zurück zum Zitat Cáceres CH (2009) Transient environmental effects of light alloy substitutions in transport vehicles. Mater Des 30(8):2813–2822CrossRef Cáceres CH (2009) Transient environmental effects of light alloy substitutions in transport vehicles. Mater Des 30(8):2813–2822CrossRef
Zurück zum Zitat Carle D, Blount G (1999) The suitability of aluminium as an alternative material for car bodies. Mater Des 20(5):267–272CrossRef Carle D, Blount G (1999) The suitability of aluminium as an alternative material for car bodies. Mater Des 20(5):267–272CrossRef
Zurück zum Zitat Carlsson BT (2009) Selecting material for the exterior panel of a private car back door by adopting a total cost accounting approach. Mater Des 30(3):826–832CrossRef Carlsson BT (2009) Selecting material for the exterior panel of a private car back door by adopting a total cost accounting approach. Mater Des 30(3):826–832CrossRef
Zurück zum Zitat Das S (2000) The life-cycle impacts of aluminum body-in-white automotive material. J Miner Met Mater Soc 52(8):41–44CrossRef Das S (2000) The life-cycle impacts of aluminum body-in-white automotive material. J Miner Met Mater Soc 52(8):41–44CrossRef
Zurück zum Zitat Das S (2005) Life cycle energy impacts of automotive liftgate inner. Resour Conserv Recycl 43(4):375–390CrossRef Das S (2005) Life cycle energy impacts of automotive liftgate inner. Resour Conserv Recycl 43(4):375–390CrossRef
Zurück zum Zitat Davies G (2003) Materials for automobile bodies. Butterworth-Heinemann, Oxford, pp 224–228 Davies G (2003) Materials for automobile bodies. Butterworth-Heinemann, Oxford, pp 224–228
Zurück zum Zitat Dubreuil A, Bushi L, Das S, Tharumarajah A, Xianzheng G (2010) A comparative life cycle assessment of magnesium front end autoparts. SAE 2010 World Congress & Exhibition, April 2010, Detroit, MI, USA, Session: Sustainable Manufacturing, Materials and Components Dubreuil A, Bushi L, Das S, Tharumarajah A, Xianzheng G (2010) A comparative life cycle assessment of magnesium front end autoparts. SAE 2010 World Congress & Exhibition, April 2010, Detroit, MI, USA, Session: Sustainable Manufacturing, Materials and Components
Zurück zum Zitat Ekvall T, Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manag 27(8):989–996CrossRef Ekvall T, Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manag 27(8):989–996CrossRef
Zurück zum Zitat Field F, Kirchain R, Clark J (2000) Life cycle assessment and temporal distributions of emissions: developing a fleet-based analysis. J Ind Ecol 4(2):71–91CrossRef Field F, Kirchain R, Clark J (2000) Life cycle assessment and temporal distributions of emissions: developing a fleet-based analysis. J Ind Ecol 4(2):71–91CrossRef
Zurück zum Zitat Forrester JW (1995) Counterintuitive behavior of social systems. Technol Rev 73(3):52–68 Forrester JW (1995) Counterintuitive behavior of social systems. Technol Rev 73(3):52–68
Zurück zum Zitat Hakamada M, Furuta T, Chino Y, Chen Y, Kusuda H, Mabuchi M (2007) Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 32(8):1352–1360CrossRef Hakamada M, Furuta T, Chino Y, Chen Y, Kusuda H, Mabuchi M (2007) Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 32(8):1352–1360CrossRef
Zurück zum Zitat Kelkar A, Roth R, Clark J (2001) Automobile bodies: can aluminum be an economical alternative to steel? J Miner, Met Mater Soc 53(8):28–32CrossRef Kelkar A, Roth R, Clark J (2001) Automobile bodies: can aluminum be an economical alternative to steel? J Miner, Met Mater Soc 53(8):28–32CrossRef
Zurück zum Zitat Kenworthy J, Murray-Leach R, Townsend C (2005) Sustainable urban transport. In: Hargroves K, Smith M (eds) The natural advantage of nations: business opportunities, innovation and governance in the 21st century. Earthscan, London Kenworthy J, Murray-Leach R, Townsend C (2005) Sustainable urban transport. In: Hargroves K, Smith M (eds) The natural advantage of nations: business opportunities, innovation and governance in the 21st century. Earthscan, London
Zurück zum Zitat Klöpffer W (2008) Life cycle sustainability assessment of products. Int J of Life Cycle Assess 13(2):89–95CrossRef Klöpffer W (2008) Life cycle sustainability assessment of products. Int J of Life Cycle Assess 13(2):89–95CrossRef
Zurück zum Zitat Lovins AB, Cramer DR (2004) Hypercars, hydrogen, and the automotive transition. Int J Veh Des 35(1/2):50–85CrossRef Lovins AB, Cramer DR (2004) Hypercars, hydrogen, and the automotive transition. Int J Veh Des 35(1/2):50–85CrossRef
Zurück zum Zitat Meadows DH (2009) Thinking in systems: a primer. Earthscan, London Meadows DH (2009) Thinking in systems: a primer. Earthscan, London
Zurück zum Zitat Puri P, Compston P, Pantano V (2009) Life cycle assessment of Australian automotive door skins. Int J Life Cycle Assess 14(5):420–428CrossRef Puri P, Compston P, Pantano V (2009) Life cycle assessment of Australian automotive door skins. Int J Life Cycle Assess 14(5):420–428CrossRef
Zurück zum Zitat Ribeiro I, Peças P, Silva A, Henriques E (2008) Life cycle engineering methodology applied to material selection, a fender case study. J Clean Prod 16(17):1887–1899CrossRef Ribeiro I, Peças P, Silva A, Henriques E (2008) Life cycle engineering methodology applied to material selection, a fender case study. J Clean Prod 16(17):1887–1899CrossRef
Zurück zum Zitat Sandén BA, Karlström M (2007) Positive and negative feedback in consequential life-cycle assessment. J Clean Prod 15(15):1469–1481CrossRef Sandén BA, Karlström M (2007) Positive and negative feedback in consequential life-cycle assessment. J Clean Prod 15(15):1469–1481CrossRef
Zurück zum Zitat Standards Australia and Standards New Zealand (1998) Australian/New Zealand Standard: Environmental management–Life cycle assessment–Principles and framework, AS/NZS ISO 14040:1998. Standards Australia, Sydney, and Standards New Zealand, Wellington Standards Australia and Standards New Zealand (1998) Australian/New Zealand Standard: Environmental management–Life cycle assessment–Principles and framework, AS/NZS ISO 14040:1998. Standards Australia, Sydney, and Standards New Zealand, Wellington
Zurück zum Zitat Sterman JD (2000) Business dynamics: systems thinking and modeling for a complex world. McGraw-Hill, Boston Sterman JD (2000) Business dynamics: systems thinking and modeling for a complex world. McGraw-Hill, Boston
Zurück zum Zitat Tharumarajah A, KoltunI P (2007) Is there an environmental advantage of using magnesium components for light-weighting cars? J Clean Prod 15(11–12):1007–1013CrossRef Tharumarajah A, KoltunI P (2007) Is there an environmental advantage of using magnesium components for light-weighting cars? J Clean Prod 15(11–12):1007–1013CrossRef
Zurück zum Zitat Udo de Haes HA, Heijungs R, Suh S, Huppes G (2004) Three strategies to overcome the limitations of life-cycle assessment. J Ind Ecol 8(3):19–32CrossRef Udo de Haes HA, Heijungs R, Suh S, Huppes G (2004) Three strategies to overcome the limitations of life-cycle assessment. J Ind Ecol 8(3):19–32CrossRef
Zurück zum Zitat Ungureanu CA, Das S, Jawahir IS (2007) Life-cycle cost analysis: aluminum versus steel in passenger cars. In: Das SK, Yin W (eds) Aluminium alloys for transportation packaging aerospace and other applications. TMS, USA Ungureanu CA, Das S, Jawahir IS (2007) Life-cycle cost analysis: aluminum versus steel in passenger cars. In: Das SK, Yin W (eds) Aluminium alloys for transportation packaging aerospace and other applications. TMS, USA
Metadaten
Titel
A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites
verfasst von
Peter Stasinopoulos
Paul Compston
Barry Newell
Haley M. Jones
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 2/2012
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-011-0344-0

Weitere Artikel der Ausgabe 2/2012

The International Journal of Life Cycle Assessment 2/2012 Zur Ausgabe