Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

A Theoretical Review on Challenges and Solutions of the Free Radical Scavenging Capability of Single-Walled Carbon Nanotubes (SWCNTs)

verfasst von : Meenakshi Malakar

Erschienen in: Micro and Nanoelectronics Devices, Circuits and Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is believed that the free radicals can harmfully influence several vital biomolecules including proteins, nucleic acids and lipids, consequently leading to various chronic diseases like cancers, neurodegenerative diseases, diabetes mellitus, respiratory diseases and cardiovascular diseases. Single-walled carbon nanotubes (SWCNTs) behave as good free radical scavengers in the front lines of theoretical models. But, literature review of ‘SWCNT as free radical scavengers’ suggests that the potentiality of SWCNTs in this field has not been investigated extensively and is yet to attain its exceeding limit. This might be due to the discrepancies existing in the theoretical models to mimic the reality. Moreover, there are experimental challenges, which necessities to be highlighted so as to permit the translation of SWCNTs into the clinic. In this review paper, we have tried to explore these discrepancies and challenges on the free radical scavenging ability of SWCNT along with some possible solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A.H. Ali Shah, S.A. Mian, G. Ali. An overview of the recent progress in the synthesis and applications of carbon nanotubes. J. Carbon Res. 5(3) (2019). https://doi.org/10.3390/c5010003 G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A.H. Ali Shah, S.A. Mian, G. Ali. An overview of the recent progress in the synthesis and applications of carbon nanotubes. J. Carbon Res. 5(3) (2019). https://​doi.​org/​10.​3390/​c5010003
5.
Zurück zum Zitat N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang, Carbon nanotube based biosensors. Sens. Actuators B. Chem. 207, 690–715 (2015)CrossRef N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang, Carbon nanotube based biosensors. Sens. Actuators B. Chem. 207, 690–715 (2015)CrossRef
6.
Zurück zum Zitat K.A. Williams, P.T.M. Veenhuizen, B.G. de la Torre, R. Eritja, C. Dekker, Carbon nanotubes with DNA recognition. Nanotechnology 420(6917), 761–761 (2002) K.A. Williams, P.T.M. Veenhuizen, B.G. de la Torre, R. Eritja, C. Dekker, Carbon nanotubes with DNA recognition. Nanotechnology 420(6917), 761–761 (2002)
7.
Zurück zum Zitat W. Qiu, H. Xu, S. Takalkar, A.S. Gurung, B. Liu, Y. Zheng, Z. Guo, M. Baloda, K. Baryeh, G. Liu, Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors Bioelectron 64, 367–372 (2015)CrossRef W. Qiu, H. Xu, S. Takalkar, A.S. Gurung, B. Liu, Y. Zheng, Z. Guo, M. Baloda, K. Baryeh, G. Liu, Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors Bioelectron 64, 367–372 (2015)CrossRef
8.
Zurück zum Zitat A.H. Neumark, G. Bisker, Fluorescent single-walled carbon nanotubes for protein detection. Sensors 19, 5403 (2019)CrossRef A.H. Neumark, G. Bisker, Fluorescent single-walled carbon nanotubes for protein detection. Sensors 19, 5403 (2019)CrossRef
10.
Zurück zum Zitat X. Kan, H. Zhou, C. Li, A. Zhu, Z. Xing, Z. Zhao, Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta. 63, 69–75 (2012)CrossRef X. Kan, H. Zhou, C. Li, A. Zhu, Z. Xing, Z. Zhao, Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta. 63, 69–75 (2012)CrossRef
13.
Zurück zum Zitat A. Markov, R. Wordenweber, L. Ichkitidze, A. Gerasimenko, U. Kurilova, I. Suetina, M. Mezentseva, A. Offenhausser, D. Telyshev, Biocompatible SWCNT conductive composites for biomedical applications. Nanomaterials 10, 2492 (2020)CrossRef A. Markov, R. Wordenweber, L. Ichkitidze, A. Gerasimenko, U. Kurilova, I. Suetina, M. Mezentseva, A. Offenhausser, D. Telyshev, Biocompatible SWCNT conductive composites for biomedical applications. Nanomaterials 10, 2492 (2020)CrossRef
15.
Zurück zum Zitat L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015)CrossRef L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015)CrossRef
16.
Zurück zum Zitat M.D. McCauley, F. Vitale, J.S. Yan, C.C. Young, B. Greet, M. Orecchioni, S. Perike, A. Elgalad, J.A. Coco, M. John, D.A. Taylor, L.C. Sampaio, L.G. Delogu, M. Razani, M. Pasquali, In vivo restoration of mycocardial conduction with carbon nanotube fibers. Circ. Arrhythmia Electrophysiol. 12(8) (2019) M.D. McCauley, F. Vitale, J.S. Yan, C.C. Young, B. Greet, M. Orecchioni, S. Perike, A. Elgalad, J.A. Coco, M. John, D.A. Taylor, L.C. Sampaio, L.G. Delogu, M. Razani, M. Pasquali, In vivo restoration of mycocardial conduction with carbon nanotube fibers. Circ. Arrhythmia Electrophysiol. 12(8) (2019)
17.
Zurück zum Zitat A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931–6936 (2007)CrossRef A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931–6936 (2007)CrossRef
18.
Zurück zum Zitat B. Pei, W. Wang, N. Dunne, X. Li, Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements and prospects. Nanomaterials 9, 1501 (2019)CrossRef B. Pei, W. Wang, N. Dunne, X. Li, Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements and prospects. Nanomaterials 9, 1501 (2019)CrossRef
19.
Zurück zum Zitat S. Arumugam, Y. Ju, Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone—a review. Mater. Today Chem. 20, 100420 (2021)CrossRef S. Arumugam, Y. Ju, Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone—a review. Mater. Today Chem. 20, 100420 (2021)CrossRef
20.
Zurück zum Zitat M.A. Deshmukh, J.Y. Jeon, T.J. Ha, Carbon nanotubes: an effective platform for biomedical electronics. Biosens. Bioelectron. 111919 (2019) M.A. Deshmukh, J.Y. Jeon, T.J. Ha, Carbon nanotubes: an effective platform for biomedical electronics. Biosens. Bioelectron. 111919 (2019)
22.
Zurück zum Zitat N. Saito, H. Haniu, Y. Usui, K. Aoki, K. Hara, S. Takanashi, M. Shimizu, N. Narita, M. Okamoto, S. Kobayashi, H. Nomura, H. Kato, N. Nishimura, S. Taruta, M. Endo, Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114(11), 6040–6079 (2014)CrossRef N. Saito, H. Haniu, Y. Usui, K. Aoki, K. Hara, S. Takanashi, M. Shimizu, N. Narita, M. Okamoto, S. Kobayashi, H. Nomura, H. Kato, N. Nishimura, S. Taruta, M. Endo, Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114(11), 6040–6079 (2014)CrossRef
23.
Zurück zum Zitat M. Yoosefian, N. Etminan, Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube. Physica E 81, 116–121 (2016)CrossRef M. Yoosefian, N. Etminan, Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube. Physica E 81, 116–121 (2016)CrossRef
24.
Zurück zum Zitat R.M. Lucente-Schultz, V.C. Moore, A.D. Leonard, B.K. Price, D.V. Kosynkin, M. Lu, R. Partha, J.L. Conyers, J.M. Tour, Antioxidant single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 3934–3941 (2009)CrossRef R.M. Lucente-Schultz, V.C. Moore, A.D. Leonard, B.K. Price, D.V. Kosynkin, M. Lu, R. Partha, J.L. Conyers, J.M. Tour, Antioxidant single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 3934–3941 (2009)CrossRef
25.
Zurück zum Zitat M.J. Martinez-Morlanes, P. Castell, P.J. Alonso, M.T. Martinez, J.A. Puertolas, Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon 50(7), 2442–2452 (2012)CrossRef M.J. Martinez-Morlanes, P. Castell, P.J. Alonso, M.T. Martinez, J.A. Puertolas, Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon 50(7), 2442–2452 (2012)CrossRef
26.
Zurück zum Zitat P. Nymark, K.A. Jensen, S. Suhonen, Y. Kembouche, M. Vippola, J. Kleinjans, J. Catalan, H. Norppa, J. Deft, J.J. Briede. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Particle and Fibre Toxicol. 11(1), 4 (2014) P. Nymark, K.A. Jensen, S. Suhonen, Y. Kembouche, M. Vippola, J. Kleinjans, J. Catalan, H. Norppa, J. Deft, J.J. Briede. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Particle and Fibre Toxicol. 11(1), 4 (2014)
27.
Zurück zum Zitat G. Cirillo, S. Hampel, R. Klingeler, F. Puoci, F. Iemma, M. Curcio, O.I. Parisi, U.G. Spizzirri, N. Picci, A. Leonhardt, M. Ritschel, B. Buchner, Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. J. Pharm. Pharmacol. 63(2), 179–188 (2011)CrossRef G. Cirillo, S. Hampel, R. Klingeler, F. Puoci, F. Iemma, M. Curcio, O.I. Parisi, U.G. Spizzirri, N. Picci, A. Leonhardt, M. Ritschel, B. Buchner, Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. J. Pharm. Pharmacol. 63(2), 179–188 (2011)CrossRef
28.
Zurück zum Zitat I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca, J.B. Nagy, B. Fubini, Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radical. Biol. Med. 40, 1227–1233 (2006)CrossRef I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca, J.B. Nagy, B. Fubini, Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radical. Biol. Med. 40, 1227–1233 (2006)CrossRef
29.
Zurück zum Zitat X. Zhao, S. Chang, J. Long, J. Li, X. Li, Y. Cao, The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: the influence of diameters of MWCNTs. Food Chem. Toxicol. 126, 169–177 (2019)CrossRef X. Zhao, S. Chang, J. Long, J. Li, X. Li, Y. Cao, The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: the influence of diameters of MWCNTs. Food Chem. Toxicol. 126, 169–177 (2019)CrossRef
30.
Zurück zum Zitat Y.G. Han, J. Xu, Z.G. Li, G.G. Ren, Z. Yang, In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neuro. Toxicol. 33(5), 1128–1134 (2012) Y.G. Han, J. Xu, Z.G. Li, G.G. Ren, Z. Yang, In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neuro. Toxicol. 33(5), 1128–1134 (2012)
31.
Zurück zum Zitat S. Jain, V.S. Thakare, M. Das, C. Godugu, A.K. Jain, R. Mathur, K. Chuttani, A.K. Mishra, Toxicity of multi-walled carbon nanotubes with end defects critically depends on their functionalization density. Chem. Res. Toxicol. 24(11), 2028–2039 (2011)CrossRef S. Jain, V.S. Thakare, M. Das, C. Godugu, A.K. Jain, R. Mathur, K. Chuttani, A.K. Mishra, Toxicity of multi-walled carbon nanotubes with end defects critically depends on their functionalization density. Chem. Res. Toxicol. 24(11), 2028–2039 (2011)CrossRef
32.
Zurück zum Zitat C. Lin, B. Fugetsu, Y. Su, F. Watari, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170(2–3), 578–583 (2009)CrossRef C. Lin, B. Fugetsu, Y. Su, F. Watari, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170(2–3), 578–583 (2009)CrossRef
33.
Zurück zum Zitat G. Rajakumar, X.H. Zhang, T. Gomathi, S.F. Wang, M.A. Ansari, G. Mydhili, G. Nirmala, M.A. Alzohairy, I.M. Chung, Current use of carbon-based materials for biomedical applications—a prospective and review. Processes 8(3), 355 (2020) G. Rajakumar, X.H. Zhang, T. Gomathi, S.F. Wang, M.A. Ansari, G. Mydhili, G. Nirmala, M.A. Alzohairy, I.M. Chung, Current use of carbon-based materials for biomedical applications—a prospective and review. Processes 8(3), 355 (2020)
34.
Zurück zum Zitat P.R. Riley, R.J. Narayan, Recent advances in carbon nanomaterials for biomedical applications—a review. Current Opin. Biomed. Eng. 17, 100262 (2021)CrossRef P.R. Riley, R.J. Narayan, Recent advances in carbon nanomaterials for biomedical applications—a review. Current Opin. Biomed. Eng. 17, 100262 (2021)CrossRef
35.
Zurück zum Zitat A. Galano, Carbon Nanotubes as free-radical scavengers. J. Phys. Chem. C 112, 8922–8927 (2008)CrossRef A. Galano, Carbon Nanotubes as free-radical scavengers. J. Phys. Chem. C 112, 8922–8927 (2008)CrossRef
36.
Zurück zum Zitat A. Phaniendra, D.B. Jestadi, Free radicals: properties, sources, targets and their implication in various diseases. Ind. J. Clin. Biochem. 30(1), 11–26 (2015)CrossRef A. Phaniendra, D.B. Jestadi, Free radicals: properties, sources, targets and their implication in various diseases. Ind. J. Clin. Biochem. 30(1), 11–26 (2015)CrossRef
37.
Zurück zum Zitat M. Valko, D. Leibfritz, J. Moncola, M.T. Cronin, M. Mazura, J. Telser, Review free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007)CrossRef M. Valko, D. Leibfritz, J. Moncola, M.T. Cronin, M. Mazura, J. Telser, Review free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007)CrossRef
38.
Zurück zum Zitat A. Galano, Carbon nanotubes: promising agents against free radicals. Nanoscale 2, 373–380 (2010)CrossRef A. Galano, Carbon nanotubes: promising agents against free radicals. Nanoscale 2, 373–380 (2010)CrossRef
39.
Zurück zum Zitat N.M. Lovine, S. Pursnani, A. Voldman, G. Wasserman, M.J. Blaser, Y. Weinrauch, Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect. Immun. 76(3), 986–993 (2008)CrossRef N.M. Lovine, S. Pursnani, A. Voldman, G. Wasserman, M.J. Blaser, Y. Weinrauch, Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect. Immun. 76(3), 986–993 (2008)CrossRef
40.
Zurück zum Zitat A. Galano, D.X. Tan, R.J. Reiter, Melatonin as a natural ally against oxidative stress : a physicochemical examination. J. Pineal. Res. 51, 1–16 (2011)CrossRef A. Galano, D.X. Tan, R.J. Reiter, Melatonin as a natural ally against oxidative stress : a physicochemical examination. J. Pineal. Res. 51, 1–16 (2011)CrossRef
41.
Zurück zum Zitat K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes, 1st edn. (Elsevier, Oxford, 1999) K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes, 1st edn. (Elsevier, Oxford, 1999)
42.
Zurück zum Zitat M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes, a Review of Current Carbon Nanotube Technologies. Eindhoven University of Technology (2003) M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes, a Review of Current Carbon Nanotube Technologies. Eindhoven University of Technology (2003)
43.
Zurück zum Zitat R. Ding, G. Lu, Z. Yan, M. Wilson, Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J. Nanosci. Nanotechnol. 1, 7–29 (2001)CrossRef R. Ding, G. Lu, Z. Yan, M. Wilson, Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J. Nanosci. Nanotechnol. 1, 7–29 (2001)CrossRef
44.
Zurück zum Zitat Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C. Chan, P. Sheng, Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001)CrossRef Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C. Chan, P. Sheng, Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001)CrossRef
45.
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)CrossRef M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)CrossRef
46.
Zurück zum Zitat L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, The smallest carbon nanotube. Nature 298, 50 (2000) L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, The smallest carbon nanotube. Nature 298, 50 (2000)
47.
Zurück zum Zitat B.K. Agrawal, S. Agrawal, R. Srivastava. An ab initio study of optical and Raman spectra of heavily Li-doped 4 A0 carbon nanotubes. J. Phys.: Condens. Matter 16, 1467 (2004) B.K. Agrawal, S. Agrawal, R. Srivastava. An ab initio study of optical and Raman spectra of heavily Li-doped 4 A0 carbon nanotubes. J. Phys.: Condens. Matter 16, 1467 (2004)
48.
Zurück zum Zitat K.E. Moore, D.D. Tune, B.S. Flavel, Double-walled carbon nanotubes processing. Adv. Mater. 27, 3105–3137 (2015)CrossRef K.E. Moore, D.D. Tune, B.S. Flavel, Double-walled carbon nanotubes processing. Adv. Mater. 27, 3105–3137 (2015)CrossRef
49.
Zurück zum Zitat J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002)CrossRef J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002)CrossRef
50.
Zurück zum Zitat C.M. Tilmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. 3, 59 (2015)CrossRef C.M. Tilmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. 3, 59 (2015)CrossRef
51.
Zurück zum Zitat A. Mahor, P.P. Singh, P. Bharadwaj, N. Sharma, S. Yadav, J.M. Rosenholm, K.K. Bansal. Carbon-based nanomaterials for delivery of biologicals and therapeutics: a cutting-edge technology. J. Carbon Res. 7(1) (2021) A. Mahor, P.P. Singh, P. Bharadwaj, N. Sharma, S. Yadav, J.M. Rosenholm, K.K. Bansal. Carbon-based nanomaterials for delivery of biologicals and therapeutics: a cutting-edge technology. J. Carbon Res. 7(1) (2021)
52.
Zurück zum Zitat A. Galano, Influence of diameter, length and chirality of single-walled carbon nanotubes on their free radical scavenging capability. J. Phys. Chem. C 113, 18487–18491 (2009)CrossRef A. Galano, Influence of diameter, length and chirality of single-walled carbon nanotubes on their free radical scavenging capability. J. Phys. Chem. C 113, 18487–18491 (2009)CrossRef
53.
Zurück zum Zitat M. Francisco-Marquez, A. Galano, A. Martinez, On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J. Phys. Chem. C 114, 6363–6370 (2010)CrossRef M. Francisco-Marquez, A. Galano, A. Martinez, On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J. Phys. Chem. C 114, 6363–6370 (2010)CrossRef
54.
Zurück zum Zitat A. Galano, M.F. Marquez, A. Martinez, Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes. J. Phys. Chem. C 114, 8302–8308 (2010)CrossRef A. Galano, M.F. Marquez, A. Martinez, Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes. J. Phys. Chem. C 114, 8302–8308 (2010)CrossRef
55.
Zurück zum Zitat A. Martinez, A. Galano, Free radical scavenging activity of ultrashort single-walled carbon nanotubes with different structures through electron transfer reactions. J. Phys. Chem. C 114, 8184–8191 (2010)CrossRef A. Martinez, A. Galano, Free radical scavenging activity of ultrashort single-walled carbon nanotubes with different structures through electron transfer reactions. J. Phys. Chem. C 114, 8184–8191 (2010)CrossRef
56.
Zurück zum Zitat A. Martinez, M. Francisco-Marquez, A. Galano, Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes. J. Phys. Chem. C 114, 14734–14739 (2010)CrossRef A. Martinez, M. Francisco-Marquez, A. Galano, Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes. J. Phys. Chem. C 114, 14734–14739 (2010)CrossRef
57.
Zurück zum Zitat P.K. Shukla, P.C. Mishra, Effects of diameter, length, chirality and defects on the scavenging action of single-walled carbon nanotubes for OH radicals: a quantum computational study. Chem. Phys. 369, 101–107 (2010)CrossRef P.K. Shukla, P.C. Mishra, Effects of diameter, length, chirality and defects on the scavenging action of single-walled carbon nanotubes for OH radicals: a quantum computational study. Chem. Phys. 369, 101–107 (2010)CrossRef
58.
Zurück zum Zitat R.M. Lucente-Schultz, V.C. Moore, A.D. Leonard, B.K. Price, D.V. Koynkin, M. Lu, R. Partha, J.L. Conyers, J.M. Tour, Antioxidant single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 3934–3941 (2009)CrossRef R.M. Lucente-Schultz, V.C. Moore, A.D. Leonard, B.K. Price, D.V. Koynkin, M. Lu, R. Partha, J.L. Conyers, J.M. Tour, Antioxidant single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 3934–3941 (2009)CrossRef
59.
Zurück zum Zitat S.B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties and applications. Crit. Rev. Solid State Mater. Sci. 26(3), 145–249 (2001)CrossRef S.B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties and applications. Crit. Rev. Solid State Mater. Sci. 26(3), 145–249 (2001)CrossRef
60.
Zurück zum Zitat A. Bende, A. Vibok, G.J. Halasz, S. Suhai, Ab initio study of the ammonia-ammonia dimer: BSSE-free structure and intermolecular harmonic vibrational frequencies. Int. J. Quantum Chem. 99, 585–593 (2004)CrossRef A. Bende, A. Vibok, G.J. Halasz, S. Suhai, Ab initio study of the ammonia-ammonia dimer: BSSE-free structure and intermolecular harmonic vibrational frequencies. Int. J. Quantum Chem. 99, 585–593 (2004)CrossRef
61.
Zurück zum Zitat N.X. Wang, K. Venkatesh, A.K. Wilson, Behavior of density functionals with respect to basis set.3. Basis Set Superposition Error. J. Phys. Chem. A 110, 779–784 (2006)CrossRef N.X. Wang, K. Venkatesh, A.K. Wilson, Behavior of density functionals with respect to basis set.3. Basis Set Superposition Error. J. Phys. Chem. A 110, 779–784 (2006)CrossRef
62.
Zurück zum Zitat M.C. Amirani, T. Tang, J. Cuervo, Quantum mechanical treatment of binding energy between DNA nucleobases and carbon nanotube: A DFT analysis. Physica E 54, 65–71 (2013)CrossRef M.C. Amirani, T. Tang, J. Cuervo, Quantum mechanical treatment of binding energy between DNA nucleobases and carbon nanotube: A DFT analysis. Physica E 54, 65–71 (2013)CrossRef
63.
Zurück zum Zitat A. Cornish-Bowden, Enthalpy-entropy compensation: a phantom phenomenon. J. Biosci. 27, 121–126 (2002)CrossRef A. Cornish-Bowden, Enthalpy-entropy compensation: a phantom phenomenon. J. Biosci. 27, 121–126 (2002)CrossRef
64.
Zurück zum Zitat X. Du, Y. Li, Y.L. Xia, S.M. Ai, J. Liang, P. Sang, X.L. Ji, S.Q. Liu, Insights into protein-ligand interactions: mechanisms, models and methods. Int. J. Mol. Sci. 17, 144 (2016)CrossRef X. Du, Y. Li, Y.L. Xia, S.M. Ai, J. Liang, P. Sang, X.L. Ji, S.Q. Liu, Insights into protein-ligand interactions: mechanisms, models and methods. Int. J. Mol. Sci. 17, 144 (2016)CrossRef
65.
Zurück zum Zitat M. Yoosefian, A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines. NNK. App. Surf. Sc. 434, 134–141 (2018)CrossRef M. Yoosefian, A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines. NNK. App. Surf. Sc. 434, 134–141 (2018)CrossRef
66.
Zurück zum Zitat L. Li, D. Peng, X. Chen, L. Liu, A. Tian, Theoretical investigation on the adsorption of DNA bases on B/N-doped SWCNT surface by the first principle. AIP Adv. 7, 105004 (2017)CrossRef L. Li, D. Peng, X. Chen, L. Liu, A. Tian, Theoretical investigation on the adsorption of DNA bases on B/N-doped SWCNT surface by the first principle. AIP Adv. 7, 105004 (2017)CrossRef
67.
Zurück zum Zitat M. Yoosefian, A. Pakpour, N. Etminan, Nanofilter platform based on functionalized carbon nanotubes for adsorbtion and elimination of Acrolein, a toxicant in cigarette smoke. App. Surf. Sci. 444, 598–603 (2018)CrossRef M. Yoosefian, A. Pakpour, N. Etminan, Nanofilter platform based on functionalized carbon nanotubes for adsorbtion and elimination of Acrolein, a toxicant in cigarette smoke. App. Surf. Sci. 444, 598–603 (2018)CrossRef
68.
Zurück zum Zitat N. Saikia, R.C. Deka, Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J. Mol. Model 19, 215–226 (2012)CrossRef N. Saikia, R.C. Deka, Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J. Mol. Model 19, 215–226 (2012)CrossRef
69.
Zurück zum Zitat D.L. Monego, M. B. da Rosa, P.C. do Nascimento. Applications of computational chemistry to the study of the antiradical activity of carotenoids: a review. Food Chem. 217, 37–44 (2016) D.L. Monego, M. B. da Rosa, P.C. do Nascimento. Applications of computational chemistry to the study of the antiradical activity of carotenoids: a review. Food Chem. 217, 37–44 (2016)
70.
Zurück zum Zitat M.A. Aguilar, F.J. Olivares del Valle, J. Tomsai, Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation. J. Chem. Phys. 98, 7375 (1993)CrossRef M.A. Aguilar, F.J. Olivares del Valle, J. Tomsai, Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation. J. Chem. Phys. 98, 7375 (1993)CrossRef
71.
Zurück zum Zitat D.D. Fitts, Principles of Quantum Mechanics as Applied to Chemistry and Chemical Physics (Cambridge University Press, New York, 2002) D.D. Fitts, Principles of Quantum Mechanics as Applied to Chemistry and Chemical Physics (Cambridge University Press, New York, 2002)
72.
Zurück zum Zitat A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical Quantum Mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116(9), 5301–5337 (2016)CrossRef A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical Quantum Mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116(9), 5301–5337 (2016)CrossRef
73.
Zurück zum Zitat A. Ghosh, P.R. Taylor, High-level ab initio calculations on the energetics of low-lying spin states of biologically relevant transition metal complexes: a first progress report. Current Opin. Chem. Biol. 7, 113–124 (2003)CrossRef A. Ghosh, P.R. Taylor, High-level ab initio calculations on the energetics of low-lying spin states of biologically relevant transition metal complexes: a first progress report. Current Opin. Chem. Biol. 7, 113–124 (2003)CrossRef
74.
Zurück zum Zitat W. Thiel, Semiempirical quantum-chemical methods. Wiley Interdisc. Rev. Comp. Mol. Sc. 4(2), 145–157 (2013) W. Thiel, Semiempirical quantum-chemical methods. Wiley Interdisc. Rev. Comp. Mol. Sc. 4(2), 145–157 (2013)
75.
Zurück zum Zitat M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. am1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985) M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. am1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985)
76.
Zurück zum Zitat J.J.P. Stewart, Optimization of parameters for semiempirical methods i. method. J. Comp. Chem. 10(2), 209–220 (1989) J.J.P. Stewart, Optimization of parameters for semiempirical methods i. method. J. Comp. Chem. 10(2), 209–220 (1989)
77.
Zurück zum Zitat J.J.P. Stewart, Optimization of parameters for semiempirical methods ii. applications. J. Comp. Chem. 10(2), 221–264 (1989) J.J.P. Stewart, Optimization of parameters for semiempirical methods ii. applications. J. Comp. Chem. 10(2), 221–264 (1989)
78.
Zurück zum Zitat J. Stewart, Optimization of parameters for semiempirical methods v: Modification of nddo approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007)CrossRef J. Stewart, Optimization of parameters for semiempirical methods v: Modification of nddo approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007)CrossRef
79.
Zurück zum Zitat N. Mardirossian, M.H. Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115(19), 2315–2372 (2017)CrossRef N. Mardirossian, M.H. Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115(19), 2315–2372 (2017)CrossRef
81.
Zurück zum Zitat A.J. Cohen, P.M. Sanchez, W. Yang, Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012)CrossRef A.J. Cohen, P.M. Sanchez, W. Yang, Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012)CrossRef
82.
Zurück zum Zitat W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRef W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRef
83.
Zurück zum Zitat J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77, 3865–3868 (1996)CrossRef J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77, 3865–3868 (1996)CrossRef
84.
Zurück zum Zitat E.R. Johnson, R.A. Wolkow, G.A. DiLabio, Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem. Phys. Lett. 394(4–6), 334–338 (2004)CrossRef E.R. Johnson, R.A. Wolkow, G.A. DiLabio, Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem. Phys. Lett. 394(4–6), 334–338 (2004)CrossRef
85.
Zurück zum Zitat E. Torres, G.A. DiLabio, A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J. Phys. Chem. Lett. 3, 1738–1744 (2012)CrossRef E. Torres, G.A. DiLabio, A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J. Phys. Chem. Lett. 3, 1738–1744 (2012)CrossRef
86.
Zurück zum Zitat P.G. Collins, P. Avouris, Nanotubes for electronics. Sci. Am. 283(6), 62–69 (2000)CrossRef P.G. Collins, P. Avouris, Nanotubes for electronics. Sci. Am. 283(6), 62–69 (2000)CrossRef
87.
Zurück zum Zitat A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadopoulos, Carbon nanotubes assembly and integration for applications. Nanosc. Res. Lett. 14(1):220 (2019) A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadopoulos, Carbon nanotubes assembly and integration for applications. Nanosc. Res. Lett. 14(1):220 (2019)
88.
Zurück zum Zitat M. Kundrapu, M. Keidar, Numerical simulation of carbon arc discharge for nanoparticle synthesis. Phy Plasmas. 19, 073510 (2012)CrossRef M. Kundrapu, M. Keidar, Numerical simulation of carbon arc discharge for nanoparticle synthesis. Phy Plasmas. 19, 073510 (2012)CrossRef
89.
Zurück zum Zitat S. Jabeen, A. Kausar, B. Muhammad, S. Gul, M. Farooq, A review on polymeric nanocomposites of nanodiamond, carbon nanotube and nanobifiller: structure, preparation and properties. Polymer Plastics Tech. Engg. 54(13) (2015) S. Jabeen, A. Kausar, B. Muhammad, S. Gul, M. Farooq, A review on polymeric nanocomposites of nanodiamond, carbon nanotube and nanobifiller: structure, preparation and properties. Polymer Plastics Tech. Engg. 54(13) (2015)
90.
Zurück zum Zitat M. Sireesha, V.J. Babu, A.S.K. Kiran, S. Ramakrishna, A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4(2), 36–57 (2018)CrossRef M. Sireesha, V.J. Babu, A.S.K. Kiran, S. Ramakrishna, A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4(2), 36–57 (2018)CrossRef
91.
Zurück zum Zitat C. Journet, P. Bernier, Production of carbon nanotubes. Appl. Phys. A – Mater Sci. Process. 67, 1–9 (1998)CrossRef C. Journet, P. Bernier, Production of carbon nanotubes. Appl. Phys. A – Mater Sci. Process. 67, 1–9 (1998)CrossRef
92.
Zurück zum Zitat M. Paradise, T. Goswami, Carbon nanotubes—production and industrial applications. Mater. Des. 28(5), 1477–1489 (2007)CrossRef M. Paradise, T. Goswami, Carbon nanotubes—production and industrial applications. Mater. Des. 28(5), 1477–1489 (2007)CrossRef
93.
Zurück zum Zitat H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)CrossRef H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)CrossRef
94.
Zurück zum Zitat T.W. Ebbesen, Carbon nanotubes: preparation and properties (CRC Press, Boca Raton, Fla USA, 1997), p.139 T.W. Ebbesen, Carbon nanotubes: preparation and properties (CRC Press, Boca Raton, Fla USA, 1997), p.139
95.
Zurück zum Zitat P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46, 2003–2025 (2008)CrossRef P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46, 2003–2025 (2008)CrossRef
96.
Zurück zum Zitat S. Abdalla, F. Al-Marzouki, A.A. Al-Ghamdi, A. Abdel-Daiem, Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 10, 358 (2015)CrossRef S. Abdalla, F. Al-Marzouki, A.A. Al-Ghamdi, A. Abdel-Daiem, Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 10, 358 (2015)CrossRef
97.
Zurück zum Zitat S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization and the application. Mat. Sc. Engg. B 268, 115095 (2021)CrossRef S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization and the application. Mat. Sc. Engg. B 268, 115095 (2021)CrossRef
98.
Zurück zum Zitat A.S.R. Bati, L.P. Yu, M. Batmunkh, J.G. Shapter, Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 10(47), 22087–22139 (2018)CrossRef A.S.R. Bati, L.P. Yu, M. Batmunkh, J.G. Shapter, Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 10(47), 22087–22139 (2018)CrossRef
99.
Zurück zum Zitat K. Aoki, N. Saito, Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials 10, 264 (2020)CrossRef K. Aoki, N. Saito, Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials 10, 264 (2020)CrossRef
100.
Zurück zum Zitat G.M. Mutlu, G.R.S. Budinger, A.A. Green, D. Urich, S. Soberanes, S.E. Chiarella, G.F. Alheid, D.R. McCrimmon, I. Szleifer, M.C. Hersam, Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano lett. 10, 1664–1670 (2010)CrossRef G.M. Mutlu, G.R.S. Budinger, A.A. Green, D. Urich, S. Soberanes, S.E. Chiarella, G.F. Alheid, D.R. McCrimmon, I. Szleifer, M.C. Hersam, Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano lett. 10, 1664–1670 (2010)CrossRef
101.
Zurück zum Zitat M.K. Gheith, V.A. Sinani, J.P. Wicksted, R.L. Matts, N.A. Kotov, Single-walled carbon nanotubes polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv. Mater. 17, 2663–2670 (2005)CrossRef M.K. Gheith, V.A. Sinani, J.P. Wicksted, R.L. Matts, N.A. Kotov, Single-walled carbon nanotubes polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv. Mater. 17, 2663–2670 (2005)CrossRef
102.
Zurück zum Zitat A.V. Liopo, M.P. Stewart, J. Hudson, J.M. Tour, T.C. Pappas, Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosc. Nanotech. 6, 1365–1374 (2006)CrossRef A.V. Liopo, M.P. Stewart, J. Hudson, J.M. Tour, T.C. Pappas, Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosc. Nanotech. 6, 1365–1374 (2006)CrossRef
103.
Zurück zum Zitat H.B. Kim, B. Jin, D.K. Patel, J.W. Kim, J. Kim, H. Seonwoo, K.T. Lim, Enhanced osteogenesis of human mesenchymal stem cells in presence of single-walled carbon nanotubes. IEEE Trans. NanoBiosc. 1–1 (2019) H.B. Kim, B. Jin, D.K. Patel, J.W. Kim, J. Kim, H. Seonwoo, K.T. Lim, Enhanced osteogenesis of human mesenchymal stem cells in presence of single-walled carbon nanotubes. IEEE Trans. NanoBiosc. 1–1 (2019)
104.
Zurück zum Zitat B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen, In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008)CrossRef B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen, In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008)CrossRef
105.
Zurück zum Zitat A.A. Shvedova, V. Castranova, E.R. Kisin, D.S. Berry, A.R. Murray, V.Z. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of the biological effects of nanotube materials using human keratinocyte cells. J. Toxicol. Environ. Health A. 66(20), 1901–1918 (2003)CrossRef A.A. Shvedova, V. Castranova, E.R. Kisin, D.S. Berry, A.R. Murray, V.Z. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of the biological effects of nanotube materials using human keratinocyte cells. J. Toxicol. Environ. Health A. 66(20), 1901–1918 (2003)CrossRef
106.
Zurück zum Zitat M.Q. Jian, H.H. Xie, K.L. Xia, Y.Y. Zhang, Chapter 15—Challenges and opportunities of carbon nanotubes. Ind Appl Carbon Nanotubes. 433–476 (2017) M.Q. Jian, H.H. Xie, K.L. Xia, Y.Y. Zhang, Chapter 15—Challenges and opportunities of carbon nanotubes. Ind Appl Carbon Nanotubes. 433–476 (2017)
107.
Zurück zum Zitat Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 120, 215–241 (2008)CrossRef Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 120, 215–241 (2008)CrossRef
108.
Zurück zum Zitat M. Anafcheh, F. Naderi, M. Zahedi, Incorporation of topological defects and atomic impurities on the carbon nanotube surface: a DFT study of AD-dimer defects. Heteroatom Chem. 29, e21431 (2018)CrossRef M. Anafcheh, F. Naderi, M. Zahedi, Incorporation of topological defects and atomic impurities on the carbon nanotube surface: a DFT study of AD-dimer defects. Heteroatom Chem. 29, e21431 (2018)CrossRef
109.
Zurück zum Zitat C.H. Moore, P. Jena, J.T. McLeskey, Tuning range-separated DFT functionals for modeling the peak absorption of MEH-PPV polymer in various solvents. Comput. Theor. Chem. 112596 (2019) C.H. Moore, P. Jena, J.T. McLeskey, Tuning range-separated DFT functionals for modeling the peak absorption of MEH-PPV polymer in various solvents. Comput. Theor. Chem. 112596 (2019)
110.
Zurück zum Zitat A. Kamath, R.A.V. Hernandez, R.V. Krems, T. Carrington, S. Manzhos, Neural networks vs Gaussian process regression for representing potential energy surfaces: a comparative study of fit quality and vibrational spectrum accuracy. J. Chem. Phys. 148(24), 241702 (2018) A. Kamath, R.A.V. Hernandez, R.V. Krems, T. Carrington, S. Manzhos, Neural networks vs Gaussian process regression for representing potential energy surfaces: a comparative study of fit quality and vibrational spectrum accuracy. J. Chem. Phys. 148(24), 241702 (2018)
112.
Zurück zum Zitat A.A. Elmaaty, K.M. Darwish, M. Khattab, S.S. Elhady, M. Salah, M.I.A. Hamed, A.A. Al-Karmalawy, M.M. Saleh. (In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. J. Biomol. Str. Dynamics. 1–28 2021) A.A. Elmaaty, K.M. Darwish, M. Khattab, S.S. Elhady, M. Salah, M.I.A. Hamed, A.A. Al-Karmalawy, M.M. Saleh. (In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. J. Biomol. Str. Dynamics. 1–28 2021)
113.
Zurück zum Zitat J. Deb, D. Paul, U. Sarkar, P.W. Ayers, Characterizing the sensitivity of bonds to the curvature of carbon nanotubes. J. Mol. Model. 24, 249 (2018)CrossRef J. Deb, D. Paul, U. Sarkar, P.W. Ayers, Characterizing the sensitivity of bonds to the curvature of carbon nanotubes. J. Mol. Model. 24, 249 (2018)CrossRef
114.
Zurück zum Zitat M. Malakar, P.K. Shukla. Effects of boron/nitrogen/phosphorus doping on the scavenging action of armchair single-walled carbon nanotubes (armchair-SWCNT) for OH radicals: a DFT study. Carbon Lett. 32(5) (2022) M. Malakar, P.K. Shukla. Effects of boron/nitrogen/phosphorus doping on the scavenging action of armchair single-walled carbon nanotubes (armchair-SWCNT) for OH radicals: a DFT study. Carbon Lett. 32(5) (2022)
115.
Zurück zum Zitat L.A. Tran, L.J. Wilson, Ultrashort carbon nanotubes. Encyclopedia of Nanotech, pp 2795–2802 (2012) L.A. Tran, L.J. Wilson, Ultrashort carbon nanotubes. Encyclopedia of Nanotech, pp 2795–2802 (2012)
116.
Zurück zum Zitat K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005)CrossRef K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005)CrossRef
117.
Zurück zum Zitat J.R. Sanchez-Valencia, T. Dienel, O. Groning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, R. Fasel, Controlled synthesis of single-chirality carbon nanotubes. Nature 512(7512), 61–64 (2014)CrossRef J.R. Sanchez-Valencia, T. Dienel, O. Groning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, R. Fasel, Controlled synthesis of single-chirality carbon nanotubes. Nature 512(7512), 61–64 (2014)CrossRef
118.
Zurück zum Zitat G. Chen, D.H. Shin, T. Iwasaki, H. Kawarada, C.J. Lee, Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology 19, 415703 (2008)CrossRef G. Chen, D.H. Shin, T. Iwasaki, H. Kawarada, C.J. Lee, Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology 19, 415703 (2008)CrossRef
119.
Zurück zum Zitat M. Yoosefian, S. Sabaei, N. Etminan, Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Computers in Biol. & Med. 114, 103433 (2019)CrossRef M. Yoosefian, S. Sabaei, N. Etminan, Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Computers in Biol. & Med. 114, 103433 (2019)CrossRef
120.
Zurück zum Zitat P.C.P. Watts, P.K. Fearon, W.K. Hsu, N.C. Billingham, H.W. Kroto, D.R.M. Walton, Carbon nanotubes as polymerantioxidants. J. Mater. Chem. 13, 491–495 (2003)CrossRef P.C.P. Watts, P.K. Fearon, W.K. Hsu, N.C. Billingham, H.W. Kroto, D.R.M. Walton, Carbon nanotubes as polymerantioxidants. J. Mater. Chem. 13, 491–495 (2003)CrossRef
122.
Zurück zum Zitat A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mat. Lett. 63, 2704–2706 (2009)CrossRef A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mat. Lett. 63, 2704–2706 (2009)CrossRef
123.
Zurück zum Zitat L.G. Vishwanathan, S. Bhowmik, M. Sharon, Natural precursors for synthesis of carbon nanomaterials by chemical vapor deposistion process: a review. Int. J. Sci. Res. 7, 1475–1485 (2018) L.G. Vishwanathan, S. Bhowmik, M. Sharon, Natural precursors for synthesis of carbon nanomaterials by chemical vapor deposistion process: a review. Int. J. Sci. Res. 7, 1475–1485 (2018)
Metadaten
Titel
A Theoretical Review on Challenges and Solutions of the Free Radical Scavenging Capability of Single-Walled Carbon Nanotubes (SWCNTs)
verfasst von
Meenakshi Malakar
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_1

Neuer Inhalt