Skip to main content
Erschienen in: Archive of Applied Mechanics 1/2017

08.11.2016 | Original

A thermo-viscoplastic constitutive law for isotropic hardening of metals

verfasst von: Stefan Schindler, Paul Steinmann, Jan C. Aurich, Marco Zimmermann

Erschienen in: Archive of Applied Mechanics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel empirical constitutive law for thermo-viscoplasticity is proposed, which considers isotropic strain and strain rate hardening as well as thermal softening. The yield stress considers strain rate and thermal effects independently for the initial yield stress and the (strain) hardening stress. To date, most plasticity models consider strain rate and temperature effects only combined for the initial and hardening stress, which is not sufficient for several materials. Seidt and Gilat (Int J Solids Struct 50(2):1781–1790, 2013) presented comprehensive experimental measurements for the aluminum alloy Al2024 including isothermal compression tests at low strain rates and various constant temperatures from room temperature to almost melting temperature as well as adiabatic compression tests at high strain rates (up to 10,900 s\(^{-1}\)). In contrast to established thermo-viscoplastic material models, the proposed model is suitable to describe the material behavior of Al2024 accurately over a large range of loading conditions, i.e. from small to large plastic strains, low and high strain rates, and from room temperature to melting temperature, which is validated by the experimental data of Seidt and Gilat (2013). Consequently, with the use of the proposed constitutive law a variety of applications can be modeled, e.g. bulk forming, hot working, chip formation during cutting processes, or crash simulations. It is in particular promising for applications where combined loading conditions occur, like high strain rates and high temperatures at the chip formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Asad, M., Girardin, F., Mabrouki, T., Rigal, J.F.: Dry cutting study of an aluminium alloy (A2024–T351): a numerical and experimental approach. Int J Mater Form 1, 499–502 (2008)CrossRef Asad, M., Girardin, F., Mabrouki, T., Rigal, J.F.: Dry cutting study of an aluminium alloy (A2024–T351): a numerical and experimental approach. Int J Mater Form 1, 499–502 (2008)CrossRef
3.
Zurück zum Zitat Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int J Plast 7, 693–712 (1991)CrossRef Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int J Plast 7, 693–712 (1991)CrossRef
4.
Zurück zum Zitat Barlat, F., Lege, D.J., Brem, J.C.: Plane stress yield function for aluminum alloy sheets—part 1: theory. Int J Plast 19, 1297–1319 (2003)CrossRefMATH Barlat, F., Lege, D.J., Brem, J.C.: Plane stress yield function for aluminum alloy sheets—part 1: theory. Int J Plast 19, 1297–1319 (2003)CrossRefMATH
6.
Zurück zum Zitat Brammer, J.A., Percival, C.M.: Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp Mech 10(6), 245–250 (1970)CrossRef Brammer, J.A., Percival, C.M.: Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp Mech 10(6), 245–250 (1970)CrossRef
9.
Zurück zum Zitat Cowper, G.R., Symonds, P.S.: Technical report no. 28 from Brown University to the Office of Naval Research under Contract No. 562(10) (1957) Cowper, G.R., Symonds, P.S.: Technical report no. 28 from Brown University to the Office of Naval Research under Contract No. 562(10) (1957)
10.
Zurück zum Zitat Fish, J., Shek, K., Pandheeradi, M., Shephard, M.: Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2), 53–73 (1997)MathSciNetCrossRefMATH Fish, J., Shek, K., Pandheeradi, M., Shephard, M.: Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2), 53–73 (1997)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Follansbee, P., Kocks, U.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36(1), 81–93 (1988). doi:10.1016/0001-6160(88)90030-2 CrossRef Follansbee, P., Kocks, U.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36(1), 81–93 (1988). doi:10.​1016/​0001-6160(88)90030-2 CrossRef
15.
Zurück zum Zitat Hodowany, J., Ravichandran, G., Rosakis, A.J., Rosakis, P.: Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2), 113–123 (2000)CrossRefMATH Hodowany, J., Ravichandran, G., Rosakis, A.J., Rosakis, P.: Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2), 113–123 (2000)CrossRefMATH
16.
Zurück zum Zitat Hollomon, J.: Tensile deformation. Trans. AIME 162, 268–290 (1945) Hollomon, J.: Tensile deformation. Trans. AIME 162, 268–290 (1945)
17.
Zurück zum Zitat Hughes, T.J., Shakib, F.: Pseudocorner theory: a simpleenhancement of J2-flow theory for applications involving nonproportional loading. Eng Comput 3(2), 116–120 (1986). doi:10.1108/eb023649 CrossRef Hughes, T.J., Shakib, F.: Pseudocorner theory: a simpleenhancement of J2-flow theory for applications involving nonproportional loading. Eng Comput 3(2), 116–120 (1986). doi:10.​1108/​eb023649 CrossRef
18.
Zurück zum Zitat Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics (1983) Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics (1983)
19.
Zurück zum Zitat Ludwik, P.: Über den Einfluss der Deformationsgeschwindigkeit bei bleibenden Deformationen mit besonderer Berücksichtigung der Nebenwirkungserscheinungen. Phys. Z. 10(1999), 411–417 (1909) Ludwik, P.: Über den Einfluss der Deformationsgeschwindigkeit bei bleibenden Deformationen mit besonderer Berücksichtigung der Nebenwirkungserscheinungen. Phys. Z. 10(1999), 411–417 (1909)
20.
Zurück zum Zitat Mahnken, R., Wolff, M., Schneidt, A., Böhm, M.: Multi-phase transformations at large strains—thermodynamic framework and simulation. Int. J. Plast. 39, 1–26 (2012)CrossRef Mahnken, R., Wolff, M., Schneidt, A., Böhm, M.: Multi-phase transformations at large strains—thermodynamic framework and simulation. Int. J. Plast. 39, 1–26 (2012)CrossRef
22.
Zurück zum Zitat Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171(3–4), 387–418 (1999)MathSciNetCrossRefMATH Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171(3–4), 387–418 (1999)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Oxford (2005)MATH Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Oxford (2005)MATH
25.
26.
Zurück zum Zitat Ozisik, M.N.: Heat Conduction. Wiley, New York (1993) Ozisik, M.N.: Heat Conduction. Wiley, New York (1993)
27.
Zurück zum Zitat Prandtl, L.: Studien über die unelastische Formänderung. Contributions to the mechanics of solids, St. Timoshenko 60th Anniversary, pp. 184–196 (1939) Prandtl, L.: Studien über die unelastische Formänderung. Contributions to the mechanics of solids, St. Timoshenko 60th Anniversary, pp. 184–196 (1939)
28.
Zurück zum Zitat Ramesh, K.T., Narasimhan, S.: Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int. J. Solids Struct. 33(25), 3723–3738 (1996)CrossRef Ramesh, K.T., Narasimhan, S.: Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int. J. Solids Struct. 33(25), 3723–3738 (1996)CrossRef
29.
Zurück zum Zitat Ravichandran, G., Rosakis, A.J., Hodowany, J., Rosakis, P.: On the conversation of plastic work into heat during high-strain-rate deformation. AIP Conf. Proc. 1(620), 557–562 (2002)CrossRefMATH Ravichandran, G., Rosakis, A.J., Hodowany, J., Rosakis, P.: On the conversation of plastic work into heat during high-strain-rate deformation. AIP Conf. Proc. 1(620), 557–562 (2002)CrossRefMATH
30.
Zurück zum Zitat Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010). doi:10.1016/j.actamat.2009.10.058 CrossRef Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010). doi:10.​1016/​j.​actamat.​2009.​10.​058 CrossRef
31.
Zurück zum Zitat Seidt, J.D.: Plastic deformation and ductile fracture of 2024-t351 aluminum under various loading conditions. Dissertation, The Ohio State University, Ohio (2010) Seidt, J.D.: Plastic deformation and ductile fracture of 2024-t351 aluminum under various loading conditions. Dissertation, The Ohio State University, Ohio (2010)
32.
Zurück zum Zitat Seidt, J.D., Gilat, A.: Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions. Int. J. Solids Struct. 50(2), 1781–1790 (2013)CrossRef Seidt, J.D., Gilat, A.: Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions. Int. J. Solids Struct. 50(2), 1781–1790 (2013)CrossRef
34.
Zurück zum Zitat Steinberg, D., Cochran, S., Guinan, M.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51(3), 1498–1504 (1980). doi:10.1063/1.327799 CrossRef Steinberg, D., Cochran, S., Guinan, M.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51(3), 1498–1504 (1980). doi:10.​1063/​1.​327799 CrossRef
35.
Zurück zum Zitat Voce, E.: The relationship between stress and strain for homogeneous deformations. J. Inst. Met. 74, 537–562 (1948) Voce, E.: The relationship between stress and strain for homogeneous deformations. J. Inst. Met. 74, 537–562 (1948)
37.
Zurück zum Zitat Zerilli, F.J., Armstrong, W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(2), 1816–1825 (1987)CrossRef Zerilli, F.J., Armstrong, W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(2), 1816–1825 (1987)CrossRef
38.
Zurück zum Zitat Zhao, N., Yang, Y.Q., Han, M., Luo, X., Feng, G.H., Zhang, R.J.: Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion–deformation heat-treatment. Trans. Nonferr. Met. Soc. China 22, 2226–2232 (2012)CrossRef Zhao, N., Yang, Y.Q., Han, M., Luo, X., Feng, G.H., Zhang, R.J.: Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion–deformation heat-treatment. Trans. Nonferr. Met. Soc. China 22, 2226–2232 (2012)CrossRef
Metadaten
Titel
A thermo-viscoplastic constitutive law for isotropic hardening of metals
verfasst von
Stefan Schindler
Paul Steinmann
Jan C. Aurich
Marco Zimmermann
Publikationsdatum
08.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1/2017
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-016-1181-1

Weitere Artikel der Ausgabe 1/2017

Archive of Applied Mechanics 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.