Skip to main content

2020 | OriginalPaper | Buchkapitel

A Tight Parallel Repetition Theorem for Partially Simulatable Interactive Arguments via Smooth KL-Divergence

verfasst von : Itay Berman, Iftach Haitner, Eliad Tsfadia

Erschienen in: Advances in Cryptology – CRYPTO 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hardness amplification is a central problem in the study of interactive protocols. While “natural” parallel repetition transformation is known to reduce the soundness error of some special cases of interactive arguments: three-message protocols (Bellare, Impagliazzo, and Naor [FOCS ’97]) and public-coin protocols (Håstad, Pass, Wikström, and Pietrzak [TCC ’10], Chung and Liu [TCC ’10] and Chung and Pass [TCC ’15]), it fails to do so in the general case (the above Bellare et al.; also Pietrzak and Wikström [TCC ’07]).
The only known round-preserving approach that applies to all interactive arguments is Haitner’s random-terminating transformation [SICOMP ’13], who showed that the parallel repetition of the transformed protocol reduces the soundness error at a weak exponential rate: if the original m-round protocol has soundness error \(1-\varepsilon \), then the n-parallel repetition of its random-terminating variant has soundness error \((1-\varepsilon )^{\varepsilon n{/}m^4}\) (omitting constant factors). Håstad et al. have generalized this result to partially simulatable interactive arguments, showing that the n-fold repetition of an m-round \(\delta \)-simulatable argument of soundness error \(1-\varepsilon \) has soundness error \((1-\varepsilon )^{\varepsilon \delta ^2 n{/}m^2}\). When applied to random-terminating arguments, the Håstad et al. bound matches that of Haitner.
In this work we prove that parallel repetition of random-terminating arguments reduces the soundness error at a much stronger exponential rate: the soundness error of the n parallel repetition is \((1-\varepsilon )^{n{/}m}\), only an m factor from the optimal rate of \((1-\varepsilon )^n\) achievable in public-coin and three-message arguments. The result generalizes to \(\delta \)-simulatable arguments, for which we prove a bound of \((1-\varepsilon )^{\delta n{/}m}\). This is achieved by presenting a tight bound on a relaxed variant of the KL-divergence between the distribution induced by our reduction and its ideal variant, a result whose scope extends beyond parallel repetition proofs. We prove the tightness of the above bound for random-terminating arguments, by presenting a matching protocol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
As in all known amplifications of computational hardness, and proven to be an inherent limitation (at least to some extent) in Dodis et al. [11], the improvement in the soundness error does not go below negligible. We ignore this subtly in the introduction. We also ignore constant factors in the exponent.
 
2
Throughout, we assume that the protocol transcript contains the verifier’s Accept/Reject decision (which is without loss of generality for random-terminating variants). We deffer the more general case for the next version.
 
3
Upward-self reductions trivially exist for interactive proof: assume the existence of a cheating prover https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq254_HTML.gif breaking the \(\alpha \) soundness error of \(\pi ^n\), then https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq257_HTML.gif , i.e., the prover using https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq258_HTML.gif in parallel for \(\ell \) times, violates the assumed \(\alpha ^\ell \) soundness error of \(\pi ^{n\ell }\). However, when considering interactive arguments, for which we cannot guarantee a soundness error below negligible (see Footnote 1), this approach breaks down when \(\alpha ^\ell \) is negligible.
 
4
\(\varDelta = \varDelta _1 \times \varDelta _2\), for \(\varDelta _1\) being a (\(\delta \)-dense) subset of the possible values for first https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq475_HTML.gif round coins, and \(\varDelta _2\) is the set of all possible values for the coins used in rounds https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq477_HTML.gif , for m being the round complexity of https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_19/503460_1_En_19_IEq478_HTML.gif .
 
5
Note that Lemma 2 is a special case of Lemma 4 that holds when choosing \(A_1,\ldots ,A_m\) with \(P[A_{\le m}]=1\).
 
6
The constant 2 can be replaced with any other constant without changing (up to a constant factor) the decreasing rate which is promised by Lemma 6.
 
Literatur
1.
Zurück zum Zitat Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 374–383 (1997) Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 374–383 (1997)
2.
Zurück zum Zitat Berman, I., Haitner, I., Tsfadia, E.: A tight parallel repetition theorem for partially simulatable interactive arguments via smooth KL-divergence. Cryptology ePrint Archive, Report 2019/393 (2019). https://eprint.iacr.org/2019/393 Berman, I., Haitner, I., Tsfadia, E.: A tight parallel repetition theorem for partially simulatable interactive arguments via smooth KL-divergence. Cryptology ePrint Archive, Report 2019/393 (2019). https://​eprint.​iacr.​org/​2019/​393
3.
Zurück zum Zitat Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. J. ACM 43(2), 831–871 (2014)MathSciNetMATH Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. J. ACM 43(2), 831–871 (2014)MathSciNetMATH
7.
Zurück zum Zitat Chung, K.M., Pass, R.: The randomness complexity of parallel repetition. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 658–667 (2011) Chung, K.M., Pass, R.: The randomness complexity of parallel repetition. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 658–667 (2011)
9.
Zurück zum Zitat Damgärd, I.B., Pfitzmann, B.: Sequential iteration arguments and an efficient zero-knowledge argument for NP. In: Annual International Colloquium on Automata, Languages and Programming (ICALP), pp. 772–783 (1998) Damgärd, I.B., Pfitzmann, B.: Sequential iteration arguments and an efficient zero-knowledge argument for NP. In: Annual International Colloquium on Automata, Languages and Programming (ICALP), pp. 772–783 (1998)
10.
Zurück zum Zitat Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 624–633 (2014) Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 624–633 (2014)
12.
Zurück zum Zitat Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)MathSciNetCrossRef Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)MathSciNetCrossRef
13.
Zurück zum Zitat Feige, U.: On the success probability of the two provers in one-round proof systems. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA, 30 June–3 July 1991, pp. 116–123 (1991) Feige, U.: On the success probability of the two provers in one-round proof systems. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA, 30 June–3 July 1991, pp. 116–123 (1991)
14.
Zurück zum Zitat Feige, U., Verbitsky, O.: Error reduction by parallel repetition - a negative result. Combinatorica 22(4), 461–478 (2002)MathSciNetCrossRef Feige, U., Verbitsky, O.: Error reduction by parallel repetition - a negative result. Combinatorica 22(4), 461–478 (2002)MathSciNetCrossRef
15.
Zurück zum Zitat Fortnow, L., Rompel, J., Sipser, M.: Errata for on the power of multi-prover interactive protocols. In: Proceedings: Fifth Annual Structure in Complexity Theory Conference, Universitat Politècnica de Catalunya, Barcelona, Spain, 8–11 July 1990, pp. 318–319 (1990) Fortnow, L., Rompel, J., Sipser, M.: Errata for on the power of multi-prover interactive protocols. In: Proceedings: Fifth Annual Structure in Complexity Theory Conference, Universitat Politècnica de Catalunya, Barcelona, Spain, 8–11 July 1990, pp. 318–319 (1990)
19.
Zurück zum Zitat Holenstein, T.: Parallel repetition: simplification and the no-signaling case. Theory Comput. 5(1), 141–172 (2009)MathSciNetCrossRef Holenstein, T.: Parallel repetition: simplification and the no-signaling case. Theory Comput. 5(1), 141–172 (2009)MathSciNetCrossRef
20.
Zurück zum Zitat Moshkovitz, D.: Parallel repetition from fortification. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 414–423 (2014) Moshkovitz, D.: Parallel repetition from fortification. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 414–423 (2014)
22.
Zurück zum Zitat Pass, R., Venkitasubramaniam, M.: A parallel repetition theorem for constant-round Arthur-Merlin proofs. TOCT 4(4), 10:1–10:22 (2012)CrossRef Pass, R., Venkitasubramaniam, M.: A parallel repetition theorem for constant-round Arthur-Merlin proofs. TOCT 4(4), 10:1–10:22 (2012)CrossRef
24.
Zurück zum Zitat Rao, A.: Parallel repetition in projection games and a concentration bound. SIAM J. Comput. 40(6), 1871–1891 (2011)MathSciNetCrossRef Rao, A.: Parallel repetition in projection games and a concentration bound. SIAM J. Comput. 40(6), 1871–1891 (2011)MathSciNetCrossRef
Metadaten
Titel
A Tight Parallel Repetition Theorem for Partially Simulatable Interactive Arguments via Smooth KL-Divergence
verfasst von
Itay Berman
Iftach Haitner
Eliad Tsfadia
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-56877-1_19

Premium Partner