Skip to main content
Erschienen in: Transportation 4/2019

20.11.2017

A time-use activity-pattern recognition model for activity-based travel demand modeling

verfasst von: Mohammad Hesam Hafezi, Lei Liu, Hugh Millward

Erschienen in: Transportation | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study develops a new comprehensive pattern recognition modeling framework that leverages activity data to derive clusters of homogeneous daily activity patterns, for use in activity-based travel demand modeling. The pattern recognition model is applied to time use data from the large Halifax STAR household travel diary survey. Several machine learning techniques not previously employed in travel behavior analysis are used within the pattern recognition modeling framework. Pattern complexity of activity sequences in the dataset was recognized using the FCM algorithm, and resulted in identification of twelve unique clusters of homogeneous daily activity patterns. We then analysed inter-dependencies in each identified cluster and characterized the cluster memberships through their socio-demographic attributes using the CART classifier. Based on the socio-demographic characteristics of individuals we were able to correctly identify which cluster individuals belonged to, and also predict various information related to their activities, such as start time, duration, travel distance, and travel mode, for use in activity-based travel demand modeling. To execute the pattern recognition model, the 24-h activity patterns are split into 288 three dimensional 5 min intervals. Each interval includes information on activity types, duration, start time, location, and travel mode if applicable. Results from aggregated statistical evaluation and Kolmogorov–Smirnov tests indicate that there is heterogeneous diversity among identified clusters in terms of temporal distribution, and substantial differences in a variety of socio-demographic variables. The homogeneous clusters identified in this study may be used to more accurately predict the scheduling behavior of specific population groups in activity-based modeling, and hence to improve prediction of the times and locations of their travel demands. Finally, the results of this study are expected to be implemented within the activity-based travel demand model, Scheduler for Activities, Locations, and Travel (SALT).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arentze, T., Timmermans, H.: ALBATROSS: a learning based transportation oriented simulation system. European Institute of Retailing and Services Studies (EIRASS), Technische Universiteit Eindhoven, Eindhoven (2000) Arentze, T., Timmermans, H.: ALBATROSS: a learning based transportation oriented simulation system. European Institute of Retailing and Services Studies (EIRASS), Technische Universiteit Eindhoven, Eindhoven (2000)
Zurück zum Zitat Auld, J., Mohammadian, A.: Framework for the development of the agent-based dynamic activity planning and travel scheduling (ADAPTS) model. Transp. Lett. 1(3), 245–255 (2009)CrossRef Auld, J., Mohammadian, A.: Framework for the development of the agent-based dynamic activity planning and travel scheduling (ADAPTS) model. Transp. Lett. 1(3), 245–255 (2009)CrossRef
Zurück zum Zitat Ben-Akiva, M.E., Bowman, J.L.: Activity-based travel demand model systems. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modeling, pp. 27–46. Springer, New York (1998)CrossRef Ben-Akiva, M.E., Bowman, J.L.: Activity-based travel demand model systems. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modeling, pp. 27–46. Springer, New York (1998)CrossRef
Zurück zum Zitat Bhat, C., Guo, J., Srinivasan, S., Sivakumar, A.: Comprehensive econometric microsimulator for daily activity-travel patterns. Transportation Research Record: Journal of the Transportation Research Board No. 1894. Transportation Research Board of the National Academies, Washington, D.C., 57–66 (2004) Bhat, C., Guo, J., Srinivasan, S., Sivakumar, A.: Comprehensive econometric microsimulator for daily activity-travel patterns. Transportation Research Record: Journal of the Transportation Research Board No. 1894. Transportation Research Board of the National Academies, Washington, D.C., 57–66 (2004)
Zurück zum Zitat Bishop, C.: Pattern recognition and machine learning (information science and statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York, (2007) Bishop, C.: Pattern recognition and machine learning (information science and statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York, (2007)
Zurück zum Zitat Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13), 3497–3500 (2003). doi:10.1093/nar/gkg500 CrossRef Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13), 3497–3500 (2003). doi:10.​1093/​nar/​gkg500 CrossRef
Zurück zum Zitat Garling, T., Brannas, K., Garvill, J., Golledge, R.G., Gopal, S., Holm, E., Lindberg, E.: Household activity scheduling. In: Transport Policy, Management and Technology Towards 2001: Selected Proceedings of the Fifth World Conference on Transport Research, pp. 235–248 (1989) Garling, T., Brannas, K., Garvill, J., Golledge, R.G., Gopal, S., Holm, E., Lindberg, E.: Household activity scheduling. In: Transport Policy, Management and Technology Towards 2001: Selected Proceedings of the Fifth World Conference on Transport Research, pp. 235–248 (1989)
Zurück zum Zitat Hafezi, M.H., Liu, L., Millward, H.: Identification of representative patterns of time use activity through fuzzy C-means clustering. Transp. Res. Rec. J. Transp. Res. Board 2668, 38–50 (2017). doi:10.3141/2668-05 CrossRef Hafezi, M.H., Liu, L., Millward, H.: Identification of representative patterns of time use activity through fuzzy C-means clustering. Transp. Res. Rec. J. Transp. Res. Board 2668, 38–50 (2017). doi:10.​3141/​2668-05 CrossRef
Zurück zum Zitat John Lu, Z.: The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc. Ser. A (Stat. Soc.) 173(3), 693–694 (2010)CrossRef John Lu, Z.: The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc. Ser. A (Stat. Soc.) 173(3), 693–694 (2010)CrossRef
Zurück zum Zitat Kubat, M.: An Introduction to Machine Learning. Springer, Cham (2015)CrossRef Kubat, M.: An Introduction to Machine Learning. Springer, Cham (2015)CrossRef
Zurück zum Zitat Kwan, M.-P.: GISICAS: an activity-based travel decision support system using a GIS-interfaced computational-process model. In: Ettema, D.F., Timmermans, H.J.P. (eds.) Activity-Based Approaches to Travel Analysis, pp. 263–282. Elsevier, Oxford (1997) Kwan, M.-P.: GISICAS: an activity-based travel decision support system using a GIS-interfaced computational-process model. In: Ettema, D.F., Timmermans, H.J.P. (eds.) Activity-Based Approaches to Travel Analysis, pp. 263–282. Elsevier, Oxford (1997)
Zurück zum Zitat Lenntorp, B.: Paths in space–time environments: a time-geographic study of movement possibilities of individuals. Environ. Plan. A 9(8), 961–972 (1977)CrossRef Lenntorp, B.: Paths in space–time environments: a time-geographic study of movement possibilities of individuals. Environ. Plan. A 9(8), 961–972 (1977)CrossRef
Zurück zum Zitat Miller, E., Roorda, M.: Prototype model of household activity-travel scheduling. Transportation Research Record: Journal of the Transportation Research Board No. 1831. Transportation Research Board of the National Academies, Washington, D.C., 114–121 (2003) Miller, E., Roorda, M.: Prototype model of household activity-travel scheduling. Transportation Research Record: Journal of the Transportation Research Board No. 1831. Transportation Research Board of the National Academies, Washington, D.C., 114–121 (2003)
Zurück zum Zitat Ngo, L.T., Pham, B.H.: A type-2 fuzzy subtractive clustering algorithm. In: Zhang, T. (ed.) Mechanical Engineering and Technology: Selected and Revised Results of the 2011 International Conference on Mechanical Engineering and Technology, London, UK, November 24–25, 2011, pp. 395–402. Springer, Berlin (2012)CrossRef Ngo, L.T., Pham, B.H.: A type-2 fuzzy subtractive clustering algorithm. In: Zhang, T. (ed.) Mechanical Engineering and Technology: Selected and Revised Results of the 2011 International Conference on Mechanical Engineering and Technology, London, UK, November 24–25, 2011, pp. 395–402. Springer, Berlin (2012)CrossRef
Zurück zum Zitat Recker, W.W., McNally, M.G., Root, G.S.: A model of complex travel behavior: part I—theoretical development. Transp. Res. Part A Gen. 20(4), 307–318 (1986a)CrossRef Recker, W.W., McNally, M.G., Root, G.S.: A model of complex travel behavior: part I—theoretical development. Transp. Res. Part A Gen. 20(4), 307–318 (1986a)CrossRef
Zurück zum Zitat Recker, W.W., McNally, M.G., Root, G.S.: A model of complex travel behavior: part II—an operational model. Transp. Res. Part A Gen. 20(4), 319–330 (1986b)CrossRef Recker, W.W., McNally, M.G., Root, G.S.: A model of complex travel behavior: part II—an operational model. Transp. Res. Part A Gen. 20(4), 319–330 (1986b)CrossRef
Zurück zum Zitat Tan, P. N., Steinbach, M., Kumar, V.: Introduction to Data Mining, pp. 145–205. Pearson Addison-Wesley, Boston (2006) Tan, P. N., Steinbach, M., Kumar, V.: Introduction to Data Mining, pp. 145–205. Pearson Addison-Wesley, Boston (2006)
Zurück zum Zitat TURP: TURP (Time Use Research Program). In: Halifax regional space time activity research (STAR) survey: a GPS-assisted household time-use survey, survey methods. Saint Mary’s University, Halifax (2008) TURP: TURP (Time Use Research Program). In: Halifax regional space time activity research (STAR) survey: a GPS-assisted household time-use survey, survey methods. Saint Mary’s University, Halifax (2008)
Zurück zum Zitat Vovsha, P., Petersen, E., Donnelly, R.: Microsimulation in travel demand modeling: lessons learned from the New York best practice model. Transp. Res. Rec. J. Transp. Res. Board 1805, 68–77 (2002)CrossRef Vovsha, P., Petersen, E., Donnelly, R.: Microsimulation in travel demand modeling: lessons learned from the New York best practice model. Transp. Res. Rec. J. Transp. Res. Board 1805, 68–77 (2002)CrossRef
Metadaten
Titel
A time-use activity-pattern recognition model for activity-based travel demand modeling
verfasst von
Mohammad Hesam Hafezi
Lei Liu
Hugh Millward
Publikationsdatum
20.11.2017
Verlag
Springer US
Erschienen in
Transportation / Ausgabe 4/2019
Print ISSN: 0049-4488
Elektronische ISSN: 1572-9435
DOI
https://doi.org/10.1007/s11116-017-9840-9

Weitere Artikel der Ausgabe 4/2019

Transportation 4/2019 Zur Ausgabe

    Premium Partner