Skip to main content
Erschienen in: Pattern Analysis and Applications 3/2023

01.05.2023 | Theoretical Advances

A two-phase projective dictionary pair learning-based classification scheme for positive and unlabeled learning

verfasst von: Yijin Wang, Yali Peng, Shigang Liu, Bao Ge, Jun Li

Erschienen in: Pattern Analysis and Applications | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the recent surge of interest in machine learning, Positive and Unlabeled learning (PU learning) has also attracted much attention of scholars. A key bottleneck for addressing PU classification is the absence of training negative data, and thus many popular approaches belonging to the “two-step” strategy have been proposed. However, almost none of the existing two-step methods can thoroughly learn the feature information of samples, which makes the extracted negative samples unreliable and easily leads to undesirable results. Therefore, in this paper, we propose a two-phase projective dictionary pair learning (TPDPL) method for PU learning. The first phase of TPDPL determines reliable negatives by exploiting the reconstruction residuals and the second phase trains the DPL-based classifier with the extracted reliable negative and original positive samples to perform classification. Our experimental results demonstrate that the TPDPL approach can achieve highly competitive classification performance when compared with conventional and state-of-the-art PU learning algorithms. More importantly, due to the special dictionary pair learning framework, the computational complexity of TPDPL is extraordinarily low.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
3.
Zurück zum Zitat Scott C, Blanchard G (2009) Novelty detection: unlabeled data definitely help. Artif Intell Stats 5:464–471 Scott C, Blanchard G (2009) Novelty detection: unlabeled data definitely help. Artif Intell Stats 5:464–471
4.
Zurück zum Zitat Blanchard G, Lee G, Scott C (2010) Semi-supervised novelty detection. J Mach Learn Res 11:2973–3009MathSciNetMATH Blanchard G, Lee G, Scott C (2010) Semi-supervised novelty detection. J Mach Learn Res 11:2973–3009MathSciNetMATH
5.
Zurück zum Zitat Pramanik S, Sagayam KM, Jena OP (2021) Machine Learning Frameworks in Cancer Detection. Int Conf Comput Sci Renew Energ (ICCSRE2021) 297:01073 Pramanik S, Sagayam KM, Jena OP (2021) Machine Learning Frameworks in Cancer Detection. Int Conf Comput Sci Renew Energ (ICCSRE2021) 297:01073
6.
Zurück zum Zitat Li W, Guo Q, Elkan C (2011) A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans Geosci Remote Sens 49(2):17–25CrossRef Li W, Guo Q, Elkan C (2011) A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans Geosci Remote Sens 49(2):17–25CrossRef
7.
Zurück zum Zitat Sansone E, De Natale FG, Zhou Z-H (2018) Efficient training for positive unlabeled learning. IEEE Trans Pattern Anal Mach Intell 41(11):2584–2598CrossRef Sansone E, De Natale FG, Zhou Z-H (2018) Efficient training for positive unlabeled learning. IEEE Trans Pattern Anal Mach Intell 41(11):2584–2598CrossRef
10.
Zurück zum Zitat Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. IEEE Int Conf Data Mining 2:179–186CrossRef Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. IEEE Int Conf Data Mining 2:179–186CrossRef
11.
Zurück zum Zitat Shi H, Pan S, Yang J, Gong C (2018) Positive and unlabeled learning via loss decomposition and centroid estimation. Int Joint Conf Artif Intell IJCAI 18:2689–2695 Shi H, Pan S, Yang J, Gong C (2018) Positive and unlabeled learning via loss decomposition and centroid estimation. Int Joint Conf Artif Intell IJCAI 18:2689–2695
12.
Zurück zum Zitat Frénay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst 25(5):845–869CrossRefMATH Frénay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst 25(5):845–869CrossRefMATH
13.
Zurück zum Zitat Natarajan N, Dhillon IS, Ravikumar PK, Tewari A (2013) Learning with noisy labels. Adv Neural Inf Process Systems (NIPS) 26:1196–1204MATH Natarajan N, Dhillon IS, Ravikumar PK, Tewari A (2013) Learning with noisy labels. Adv Neural Inf Process Systems (NIPS) 26:1196–1204MATH
14.
Zurück zum Zitat Tanaka D, Ikami D, Yamasaki T, and Aizawa K (2018) Joint optimization framework for learning with noisy labels. In: proceedings of the IEEE conference on computer vision and pattern recognition CVPR, pp. 5552–5560 Tanaka D, Ikami D, Yamasaki T, and Aizawa K (2018) Joint optimization framework for learning with noisy labels. In: proceedings of the IEEE conference on computer vision and pattern recognition CVPR, pp. 5552–5560
15.
Zurück zum Zitat Zhang C, Ren D, Liu T, Yang J and Gong C (2019) Positive and unlabeled learning with label disambiguation. In: twenty-eighth international joint conference on artificial intelligence IJCAI-19, pp. 4250–4256 Zhang C, Ren D, Liu T, Yang J and Gong C (2019) Positive and unlabeled learning with label disambiguation. In: twenty-eighth international joint conference on artificial intelligence IJCAI-19, pp. 4250–4256
16.
Zurück zum Zitat Gangeh MJ., Farahat AK, Ghodsi A, and Kamel MS (2015) Supervised dictionary learning and sparse representation-a review. Comput Sci, arXiv:1502.05928 Gangeh MJ., Farahat AK, Ghodsi A, and Kamel MS (2015) Supervised dictionary learning and sparse representation-a review. Comput Sci, arXiv:​1502.​05928
19.
Zurück zum Zitat Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRefMATH Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRefMATH
20.
Zurück zum Zitat Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. Int Conf Comput Vis 2011:543–550 Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. Int Conf Comput Vis 2011:543–550
21.
Zurück zum Zitat Cai S, Zuo W, Zhang L, Feng X, and Wang P (2014) Support vector guided dictionary learning. European Conf Comput Vis, pp. 624–639 Cai S, Zuo W, Zhang L, Feng X, and Wang P (2014) Support vector guided dictionary learning. European Conf Comput Vis, pp. 624–639
22.
Zurück zum Zitat Gu S, Zhang L, Zuo W, Feng X (2014) Projective dictionary pair learning for pattern classification. Adv Neural Inf Process System 27:793–801 Gu S, Zhang L, Zuo W, Feng X (2014) Projective dictionary pair learning for pattern classification. Adv Neural Inf Process System 27:793–801
23.
Zurück zum Zitat Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef
24.
Zurück zum Zitat Xu Y, Zhu Q, Chen Y, Pan J-S (2013) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 9(2):543–554 Xu Y, Zhu Q, Chen Y, Pan J-S (2013) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 9(2):543–554
25.
Zurück zum Zitat Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Synth Lect Axrtif Intell Mach Learn 3(1):1–130MATH Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Synth Lect Axrtif Intell Mach Learn 3(1):1–130MATH
26.
Zurück zum Zitat Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang J (2016) Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans Image Process 25(7):3249–3260MathSciNetCrossRefMATH Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang J (2016) Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans Image Process 25(7):3249–3260MathSciNetCrossRefMATH
27.
Zurück zum Zitat Niu G, Plessis M, Sakai T, Ma Y, Sugiyama M (2016) Theoretical comparisons of positive-unlabeled learning against positive-negative learning. Adv Neural Inf Process Syst (NIPS) 29:1199–1207 Niu G, Plessis M, Sakai T, Ma Y, Sugiyama M (2016) Theoretical comparisons of positive-unlabeled learning against positive-negative learning. Adv Neural Inf Process Syst (NIPS) 29:1199–1207
28.
Zurück zum Zitat Gong C, Liu T, Yang J, Tao D (2019) Large-margin label-calibrated support vector machines for positive and unlabeled learning. IEEE Trans Neural Netw Learn Syst 30(11):1–13CrossRef Gong C, Liu T, Yang J, Tao D (2019) Large-margin label-calibrated support vector machines for positive and unlabeled learning. IEEE Trans Neural Netw Learn Syst 30(11):1–13CrossRef
29.
Zurück zum Zitat Kwon Y, Kim W, Sugiyama M, Paik MC (2020) Principled analytic classifier for positive-unlabeled learning via weighted integral probability metric. Mach Learn 109(3):513–532MathSciNetCrossRefMATH Kwon Y, Kim W, Sugiyama M, Paik MC (2020) Principled analytic classifier for positive-unlabeled learning via weighted integral probability metric. Mach Learn 109(3):513–532MathSciNetCrossRefMATH
30.
Zurück zum Zitat Liu B, Lee W, Yu P, Li X (2002) Partially supervised classification of text documents. Int Conf Mach Learn 2(485):387–394 Liu B, Lee W, Yu P, Li X (2002) Partially supervised classification of text documents. Int Conf Mach Learn 2(485):387–394
31.
Zurück zum Zitat Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 39(1):1–38MathSciNetMATH Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 39(1):1–38MathSciNetMATH
32.
Zurück zum Zitat Fung GPC, Lu HJ (2006) Text classification without negative examples revisit. IEEE Trans Knowl Data Eng 18(1):6–20CrossRef Fung GPC, Lu HJ (2006) Text classification without negative examples revisit. IEEE Trans Knowl Data Eng 18(1):6–20CrossRef
33.
Zurück zum Zitat Wee Sun Lee and Bing Liu (2003) Learning with positive and unlabeled examples using weighted logistic regression. Int Conf Mach Learn 3:448–455 Wee Sun Lee and Bing Liu (2003) Learning with positive and unlabeled examples using weighted logistic regression. Int Conf Mach Learn 3:448–455
34.
Zurück zum Zitat Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 213–220 Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 213–220
35.
Zurück zum Zitat Plessis MD, Niu G, Sugiyama M (2014) Analysis of learning from positive and unlabeled data. Adv Neural Inf Process Syst 27:703–711 Plessis MD, Niu G, Sugiyama M (2014) Analysis of learning from positive and unlabeled data. Adv Neural Inf Process Syst 27:703–711
36.
Zurück zum Zitat Plessis MD, Niu G, Sugiyama M (2015) Convex formulation for learning from positive and unlabeled data. Int Conf Mach Learn 37:1386–1394 Plessis MD, Niu G, Sugiyama M (2015) Convex formulation for learning from positive and unlabeled data. Int Conf Mach Learn 37:1386–1394
37.
Zurück zum Zitat Kiryo R, Niu G, Plessis MCD, Sugiyama M (2017) Positive-unlabeled learning with non-negative risk estimator. Adv Neural Inf Process Syst (NIPS) 30:1674–1684 Kiryo R, Niu G, Plessis MCD, Sugiyama M (2017) Positive-unlabeled learning with non-negative risk estimator. Adv Neural Inf Process Syst (NIPS) 30:1674–1684
38.
Zurück zum Zitat Hou M, Chaib-draa B, Li C, and Zhao Q (2018) Generative adversarial positive-unlabeled learning. Int Joint Conf Artif Intell (IJCAI), pp. 2255–2261 Hou M, Chaib-draa B, Li C, and Zhao Q (2018) Generative adversarial positive-unlabeled learning. Int Joint Conf Artif Intell (IJCAI), pp. 2255–2261
39.
Zurück zum Zitat Sakai T, Plessis MCD, Niu G, Sugiyama M (2017) Semi-supervised classification based on classification from positive and unlabeled data. Int Conf Mach Learn 70:2998–3006 Sakai T, Plessis MCD, Niu G, Sugiyama M (2017) Semi-supervised classification based on classification from positive and unlabeled data. Int Conf Mach Learn 70:2998–3006
40.
Zurück zum Zitat Gong T, Wang G, Ye J, Xu Z, Lin M (2018) Margin based PU learning. AAAI Conf Artif Intell (AAAI) 32(1):1–8 Gong T, Wang G, Ye J, Xu Z, Lin M (2018) Margin based PU learning. AAAI Conf Artif Intell (AAAI) 32(1):1–8
42.
Zurück zum Zitat Huang M, Wei Y, Jiang J et al (2014) Brain extraction based on locally linear representation-based classification. Neuroimage 92(10):322–339CrossRef Huang M, Wei Y, Jiang J et al (2014) Brain extraction based on locally linear representation-based classification. Neuroimage 92(10):322–339CrossRef
43.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
44.
Zurück zum Zitat Pati YC, Rezaiifar R, and Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: proceedings of 27th asilomar conference on signals, systems and computers, pp. 40–44 Pati YC, Rezaiifar R, and Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: proceedings of 27th asilomar conference on signals, systems and computers, pp. 40–44
45.
Zurück zum Zitat Zhang Q, Li B (2011) Discriminative K-SVD for dictionary learning in face recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 2691–2698 Zhang Q, Li B (2011) Discriminative K-SVD for dictionary learning in face recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 2691–2698
46.
Zurück zum Zitat Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 1697–1704 Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 1697–1704
47.
Zurück zum Zitat Goldstein TOM, Donoghue BO, Setzer S, Baraniuk R (2014) Fast alternating direction optimization methods. SIAM J Imag Sci 7(3):1588–1623MathSciNetCrossRefMATH Goldstein TOM, Donoghue BO, Setzer S, Baraniuk R (2014) Fast alternating direction optimization methods. SIAM J Imag Sci 7(3):1588–1623MathSciNetCrossRefMATH
48.
Zurück zum Zitat Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014) OpenML: networked science in machine learning. ACM SIGKDD Explorations Newsl 15(2):49–60CrossRef Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014) OpenML: networked science in machine learning. ACM SIGKDD Explorations Newsl 15(2):49–60CrossRef
50.
Zurück zum Zitat Ameri R, Pouyan A, Abolghasemi V (2016) Projective dictionary pair learning for eeg signal classification in brain computer interface applications. Neurocomputing 218:382–389CrossRef Ameri R, Pouyan A, Abolghasemi V (2016) Projective dictionary pair learning for eeg signal classification in brain computer interface applications. Neurocomputing 218:382–389CrossRef
51.
Zurück zum Zitat Zhang L, Shen Y, Li HY, Lu J (2014) 3D palmprint identification using block-wise features and collaborative representation. IEEE Trans Pattern Anal Mach Intell 37(8):1730–1736CrossRef Zhang L, Shen Y, Li HY, Lu J (2014) 3D palmprint identification using block-wise features and collaborative representation. IEEE Trans Pattern Anal Mach Intell 37(8):1730–1736CrossRef
52.
Zurück zum Zitat Wang Y, Peng Y, He K, Liu S, Li J (2021) A two-step classification method based on collaborative representation for positive and unlabeled learning. Neural Process Lett 53(6):4239–4255CrossRef Wang Y, Peng Y, He K, Liu S, Li J (2021) A two-step classification method based on collaborative representation for positive and unlabeled learning. Neural Process Lett 53(6):4239–4255CrossRef
Metadaten
Titel
A two-phase projective dictionary pair learning-based classification scheme for positive and unlabeled learning
verfasst von
Yijin Wang
Yali Peng
Shigang Liu
Bao Ge
Jun Li
Publikationsdatum
01.05.2023
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 3/2023
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-023-01151-1

Weitere Artikel der Ausgabe 3/2023

Pattern Analysis and Applications 3/2023 Zur Ausgabe

Industrial and Commercial Application

Body condition scoring network based on improved YOLOX

Premium Partner