Skip to main content
Erschienen in: Quantum Information Processing 1/2020

01.01.2020

A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security

verfasst von: Changbin Lu, Fuyou Miao, Junpeng Hou, Wenchao Huang, Yan Xiong

Erschienen in: Quantum Information Processing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum secret sharing (QSS) schemes without entanglement have huge advantages in scalability and are easier to realize as they only require sequential communications of a single quantum system. However, these schemes often come with drawbacks such as exact (nn) structure, security flaws and absences of effective cheating detections. To address these problems, we propose a verifiable framework by utilizing entanglement-free states to construct (tn)-QSS schemes. Our work is the heuristic step toward information-theoretical security in entanglement-free QSS, and it sheds light on how to establish effective verification mechanism against cheating. As a result, the proposed framework has a significant importance in constructing QSS schemes for versatile applications in quantum networks due to its intrinsic scalability, flexibility and information-theoretical security.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Blakley, G.R. et al.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48 (1979) Blakley, G.R. et al.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48 (1979)
4.
Zurück zum Zitat Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: International Workshop on Public Key Cryptography, pp. 31–46. Springer, Heidelberg (2003) Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: International Workshop on Public Key Cryptography, pp. 31–46. Springer, Heidelberg (2003)
5.
Zurück zum Zitat Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Tech. 141(5), 307–313 (1994)MATH Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Tech. 141(5), 307–313 (1994)MATH
6.
Zurück zum Zitat Liu, Y.-N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12–24 (2016) Liu, Y.-N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12–24 (2016)
7.
Zurück zum Zitat Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994) Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994)
8.
Zurück zum Zitat Patel, K.: Secure multiparty computation using secret sharing. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 863–866. IEEE, Piscataway (2016) Patel, K.: Secure multiparty computation using secret sharing. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 863–866. IEEE, Piscataway (2016)
9.
Zurück zum Zitat Shor P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Piscataway (1994) Shor P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Piscataway (1994)
10.
Zurück zum Zitat Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADS Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADS
11.
Zurück zum Zitat Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)ADSMATH Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)ADSMATH
12.
Zurück zum Zitat Dieks, D.G.B.J.: Communication by epr devices. Phys. Lett. A 92(6), 271–272 (1982)ADS Dieks, D.G.B.J.: Communication by epr devices. Phys. Lett. A 92(6), 271–272 (1982)ADS
13.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADS Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADS
14.
15.
Zurück zum Zitat Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)ADS Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)ADS
16.
Zurück zum Zitat Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)ADSMathSciNet Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)ADSMathSciNet
17.
18.
Zurück zum Zitat Yao, F., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015) Yao, F., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)
19.
Zurück zum Zitat Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88(4), 042332 (2013)ADS Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88(4), 042332 (2013)ADS
20.
Zurück zum Zitat He, G.P., Bai, Y.-K.: Quantum secret sharing based on smolin states alone. J. Phys. A: Math. Theor. 41(41), 415304 (2008)ADSMathSciNetMATH He, G.P., Bai, Y.-K.: Quantum secret sharing based on smolin states alone. J. Phys. A: Math. Theor. 41(41), 415304 (2008)ADSMathSciNetMATH
21.
Zurück zum Zitat Chen, Y.-A., Zhang, A.-N., Zhao, Z., Zhou, X.-Q., Chao-Yang, L., Peng, C.-Z., Yang, T., Pan, J.-W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005)ADS Chen, Y.-A., Zhang, A.-N., Zhao, Z., Zhou, X.-Q., Chao-Yang, L., Peng, C.-Z., Yang, T., Pan, J.-W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005)ADS
22.
Zurück zum Zitat Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)ADS Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)ADS
23.
Zurück zum Zitat Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992 (1995)ADS Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992 (1995)ADS
24.
Zurück zum Zitat Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)ADS Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)ADS
25.
Zurück zum Zitat Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)ADS Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)ADS
26.
Zurück zum Zitat Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)ADSMathSciNet Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)ADSMathSciNet
27.
Zurück zum Zitat Changbin, L., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17(11), 310 (2018)ADSMathSciNetMATH Changbin, L., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17(11), 310 (2018)ADSMathSciNetMATH
28.
Zurück zum Zitat Bai, C.-M., Li, Z.-H., Li, Y.-M.: Sequential quantum secret sharing using a single qudit. Commun. Theory Phys. 69(5), 513 (2018)ADSMathSciNet Bai, C.-M., Li, Z.-H., Li, Y.-M.: Sequential quantum secret sharing using a single qudit. Commun. Theory Phys. 69(5), 513 (2018)ADSMathSciNet
29.
Zurück zum Zitat He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98(2), 028901 (2007)ADS He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98(2), 028901 (2007)ADS
30.
Zurück zum Zitat Lin, S., Guo, G.-D., Yong-Zhen, X., Sun, Y., Liu, X.-F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)ADS Lin, S., Guo, G.-D., Yong-Zhen, X., Sun, Y., Liu, X.-F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)ADS
31.
Zurück zum Zitat McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)MathSciNet McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)MathSciNet
32.
Zurück zum Zitat Massey, J. L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279. Citeseer (1993) Massey, J. L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279. Citeseer (1993)
33.
Zurück zum Zitat Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)MathSciNet Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)MathSciNet
34.
Zurück zum Zitat Mignotte, M.: How to share a secret. In: Workshop on Cryptography, pp. 371–375. Springer, Heidelberg (1982) Mignotte, M.: How to share a secret. In: Workshop on Cryptography, pp. 371–375. Springer, Heidelberg (1982)
35.
Zurück zum Zitat Thas, K.: The geometry of generalized pauli operators of n-qudit hilbert space, and an application to mubs. Europhys. Lett. 86(6), 60005 (2009)ADS Thas, K.: The geometry of generalized pauli operators of n-qudit hilbert space, and an application to mubs. Europhys. Lett. 86(6), 60005 (2009)ADS
36.
Zurück zum Zitat Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)ADS Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)ADS
37.
Zurück zum Zitat Ioannis Kogias, Y., Xiang, Q.H., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)ADS Ioannis Kogias, Y., Xiang, Q.H., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)ADS
38.
Zurück zum Zitat Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetMATH Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetMATH
39.
Zurück zum Zitat Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)ADSMathSciNetMATH Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)ADSMathSciNetMATH
40.
Zurück zum Zitat Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)ADS Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)ADS
41.
Zurück zum Zitat Deng, F.-G., Long, G.L., Zhou, H.-Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)ADSMATH Deng, F.-G., Long, G.L., Zhou, H.-Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)ADSMATH
42.
Zurück zum Zitat Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78(1), 012344 (2008)ADS Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78(1), 012344 (2008)ADS
43.
Zurück zum Zitat Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)ADS Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)ADS
44.
Zurück zum Zitat Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)ADSMathSciNet Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)ADSMathSciNet
45.
Zurück zum Zitat Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88(4), 042313 (2013)ADS Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88(4), 042313 (2013)ADS
46.
47.
Zurück zum Zitat Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)ADS Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)ADS
48.
Zurück zum Zitat Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)ADS Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)ADS
49.
Zurück zum Zitat Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)ADS Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)ADS
50.
Zurück zum Zitat Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)ADS Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)ADS
51.
Zurück zum Zitat Changbin, L., Miao, F., Meng, K., Yue, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)ADSMathSciNetMATH Changbin, L., Miao, F., Meng, K., Yue, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)ADSMathSciNetMATH
52.
Zurück zum Zitat Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494–4497 (2013)ADS Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494–4497 (2013)ADS
53.
Zurück zum Zitat Godfrin, C., Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., Balestro, F.: Generalized ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4(1), 53 (2018)ADS Godfrin, C., Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., Balestro, F.: Generalized ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4(1), 53 (2018)ADS
54.
Zurück zum Zitat Giordani, T., Polino, E., Emiliani, S., Suprano, A., Innocenti, L., Majury, H., Marrucci, L., Paternostro, M., Ferraro, A., Spagnolo, N., et al.: Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122(2), 020503 (2019)ADS Giordani, T., Polino, E., Emiliani, S., Suprano, A., Innocenti, L., Majury, H., Marrucci, L., Paternostro, M., Ferraro, A., Spagnolo, N., et al.: Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122(2), 020503 (2019)ADS
Metadaten
Titel
A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security
verfasst von
Changbin Lu
Fuyou Miao
Junpeng Hou
Wenchao Huang
Yan Xiong
Publikationsdatum
01.01.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2509-x

Weitere Artikel der Ausgabe 1/2020

Quantum Information Processing 1/2020 Zur Ausgabe

Neuer Inhalt