Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2016

08.02.2016

A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy

verfasst von: Shengbo Jiao, Chao Gao, Li Cheng, Xiaowei Li, Yu Feng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work studied the very high-cycle fatigue (VHCF) test and fatigue properties of TC17 titanium alloy. The specimens for bending vibration were designed using the finite element method and the VHCF tests were conducted by using the ultrasonic fatigue testing system. The results indicated that there is no the fatigue limit for TC17 titanium alloy, and the S–N curve shows a continuously descending trend. The fatigue crack initiates at the specimen surface within the range of VHCF and the VHCF lives follow the log-normal distribution more closely.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Pyttel, D. Schwerdt, and C. Berger, Very High Cycle Fatigue—is There a Fatigue Limit?, Int. J. Fatigue, 2011, 33, p 49–58CrossRef B. Pyttel, D. Schwerdt, and C. Berger, Very High Cycle Fatigue—is There a Fatigue Limit?, Int. J. Fatigue, 2011, 33, p 49–58CrossRef
2.
Zurück zum Zitat C. Bathias and P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components, Int. J. Fatigue, 2010, 32, p 894–897CrossRef C. Bathias and P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components, Int. J. Fatigue, 2010, 32, p 894–897CrossRef
3.
Zurück zum Zitat L. Yu-Heng, X. Zhi-Yu, H. Lei et al., Ultra-High Cycle Fatigue Behaviour of Warm Compaction Fe-Cu-Ni-Mo-C Sintered Material, Mater. Des., 2014, 55, p 758–763CrossRef L. Yu-Heng, X. Zhi-Yu, H. Lei et al., Ultra-High Cycle Fatigue Behaviour of Warm Compaction Fe-Cu-Ni-Mo-C Sintered Material, Mater. Des., 2014, 55, p 758–763CrossRef
4.
Zurück zum Zitat P. Grad, B. Reuscher, and A. Brodyanski, Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels, Scr. Mater., 2012, 67, p 838–841CrossRef P. Grad, B. Reuscher, and A. Brodyanski, Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels, Scr. Mater., 2012, 67, p 838–841CrossRef
5.
Zurück zum Zitat H. Stefan, B. Frank, W. Guntram et al., Analysis of Fatigue Properties and Failure Mechanisms of Ti6Al4V in the Very High Cycle Fatigue Regime Using Ultrasonic Technology and 3D Laser Scanning Vibrometry, Ultrasonics, 2013, 53, p 1433–1440CrossRef H. Stefan, B. Frank, W. Guntram et al., Analysis of Fatigue Properties and Failure Mechanisms of Ti6Al4V in the Very High Cycle Fatigue Regime Using Ultrasonic Technology and 3D Laser Scanning Vibrometry, Ultrasonics, 2013, 53, p 1433–1440CrossRef
6.
Zurück zum Zitat P.F. Filgueiras, C. Bathias, E.S. Palma et al., Inducing Very High Cycle Fretting-Fatigue in the Ultrasonic Regime, Tribol. Int., 2014, 76, p 57–62CrossRef P.F. Filgueiras, C. Bathias, E.S. Palma et al., Inducing Very High Cycle Fretting-Fatigue in the Ultrasonic Regime, Tribol. Int., 2014, 76, p 57–62CrossRef
7.
Zurück zum Zitat Bathias C, Paris P.C. Gigacycle Fatigue in Mechanical Practice. NewYork: Marcel Dekker, 2005. Bathias C, Paris P.C. Gigacycle Fatigue in Mechanical Practice. NewYork: Marcel Dekker, 2005.
8.
Zurück zum Zitat MIL-HDBK, 1783BW/CHANGE2, Engine Structural Integrity Programs (ENSIP). US Department of Defense, Washington, 2004. MIL-HDBK, 1783BW/CHANGE2, Engine Structural Integrity Programs (ENSIP). US Department of Defense, Washington, 2004.
9.
Zurück zum Zitat M. Bruchhausen, P. Hähner, B. Fischer et al., Device for Carrying Out Environmental Very High Cycle Fatigue Tests With Ultrasonic Excitation in Asymmetric Push-Pull Mode, Int. J. Fatigue, 2013, 52, p 11–19CrossRef M. Bruchhausen, P. Hähner, B. Fischer et al., Device for Carrying Out Environmental Very High Cycle Fatigue Tests With Ultrasonic Excitation in Asymmetric Push-Pull Mode, Int. J. Fatigue, 2013, 52, p 11–19CrossRef
10.
Zurück zum Zitat M. Nakajima, K. Tokaji, and H. Itoga, Effect of Loading Condition on Very High Cycle Fatigue Behavior in a High Strength Steel, Int. J. Fatigue, 2010, 32, p 475–480CrossRef M. Nakajima, K. Tokaji, and H. Itoga, Effect of Loading Condition on Very High Cycle Fatigue Behavior in a High Strength Steel, Int. J. Fatigue, 2010, 32, p 475–480CrossRef
11.
Zurück zum Zitat N. Baohua, Zh Zheng, Zh Zihua et al., Effect of Anodizing Treatment on the Very High Cycle Fatigue Behavior of 2A12-T4 Aluminum Alloy, Mater. Des., 2013, 50, p 1005–1010CrossRef N. Baohua, Zh Zheng, Zh Zihua et al., Effect of Anodizing Treatment on the Very High Cycle Fatigue Behavior of 2A12-T4 Aluminum Alloy, Mater. Des., 2013, 50, p 1005–1010CrossRef
12.
Zurück zum Zitat H. Youshi, L. Zhengqiang, S. Chengqi et al., Propensities of Crack Interior Initiation and Early Growth for Very-High-Cycle Fatigue of High Strength Steels, Int. J. Fatigue, 2014, 58, p 144–151CrossRef H. Youshi, L. Zhengqiang, S. Chengqi et al., Propensities of Crack Interior Initiation and Early Growth for Very-High-Cycle Fatigue of High Strength Steels, Int. J. Fatigue, 2014, 58, p 144–151CrossRef
13.
Zurück zum Zitat Ch Guocai and Zh Nian, Study of Crack Initiation or Damage in Very High Cycle Fatigue Using Ultrasonic Fatigue Test and Microstructure Analysis, Ultrasonics, 2013, 53, p 1406–1411CrossRef Ch Guocai and Zh Nian, Study of Crack Initiation or Damage in Very High Cycle Fatigue Using Ultrasonic Fatigue Test and Microstructure Analysis, Ultrasonics, 2013, 53, p 1406–1411CrossRef
14.
Zurück zum Zitat Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida, High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25(8/9), p 823–830CrossRef Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida, High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25(8/9), p 823–830CrossRef
15.
Zurück zum Zitat T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi et al., Experimental Reconfirmation of Characteristic S-N Property for High Carbon Chromium Bearing Steel in Wide Life Region in Rotating Bending, J Soc Mater Sci Jpn, 2000, 49(7), p 779–785CrossRef T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi et al., Experimental Reconfirmation of Characteristic S-N Property for High Carbon Chromium Bearing Steel in Wide Life Region in Rotating Bending, J Soc Mater Sci Jpn, 2000, 49(7), p 779–785CrossRef
16.
Zurück zum Zitat X. Hongqian, T. Hua, W. Qingyuan et al., Development of a Three-Point Bending Fatigue Testing Methodology at 20 kHz Frequency, Int. J. Fatigue, 2007, 29, p 2085–2093CrossRef X. Hongqian, T. Hua, W. Qingyuan et al., Development of a Three-Point Bending Fatigue Testing Methodology at 20 kHz Frequency, Int. J. Fatigue, 2007, 29, p 2085–2093CrossRef
17.
Zurück zum Zitat T. Weiwei and W. Hong, Method of Ultrasonic Bending Fatigue and Application, Mech. Eng., 2008, 30(6), p 43–46 T. Weiwei and W. Hong, Method of Ultrasonic Bending Fatigue and Application, Mech. Eng., 2008, 30(6), p 43–46
18.
Zurück zum Zitat Y. Shimamura, K. Narita, H. Ishii et al., Fatigue Properties of Carburized Alloy Steel in Very High Cycle Regime Under Torsional Loading, Int. J. Fatigue, 2014, 60, p 57–62CrossRef Y. Shimamura, K. Narita, H. Ishii et al., Fatigue Properties of Carburized Alloy Steel in Very High Cycle Regime Under Torsional Loading, Int. J. Fatigue, 2014, 60, p 57–62CrossRef
19.
Zurück zum Zitat I. Marines, D. Jean-Pierre, and C. Bathias, Development of a New Device to Perform Torsional Ultrasonic Fatigue Testing, Int. J. Fatigue, 2007, 29, p 2094–2101CrossRef I. Marines, D. Jean-Pierre, and C. Bathias, Development of a New Device to Perform Torsional Ultrasonic Fatigue Testing, Int. J. Fatigue, 2007, 29, p 2094–2101CrossRef
20.
Zurück zum Zitat Ni J, Bathias C. Development of an ultrasonic fatigue device and its application in fatigue behavior studies. 10th International Conference on Experimental Mechanics, 1994, Lisbon, Portugal. Ni J, Bathias C. Development of an ultrasonic fatigue device and its application in fatigue behavior studies. 10th International Conference on Experimental Mechanics, 1994, Lisbon, Portugal.
21.
Zurück zum Zitat I. Marines, X. Bin, and C. Bathias, An Understanding of Very High Cycle Fatigue of Metals, Int. J. Fatigue, 2003, 25, p 1101–1107CrossRef I. Marines, X. Bin, and C. Bathias, An Understanding of Very High Cycle Fatigue of Metals, Int. J. Fatigue, 2003, 25, p 1101–1107CrossRef
22.
Zurück zum Zitat Y. Furuya, S. Matsuoka, T. Abe, and K. Yamaguchi, Gigacycle Fatigue Properties for High-Strength Low-Alloy Steel at 100 Hz, 600 Hz, and 20 kHz, Scripta Mater., 2002, 46, p 157–162CrossRef Y. Furuya, S. Matsuoka, T. Abe, and K. Yamaguchi, Gigacycle Fatigue Properties for High-Strength Low-Alloy Steel at 100 Hz, 600 Hz, and 20 kHz, Scripta Mater., 2002, 46, p 157–162CrossRef
23.
Zurück zum Zitat W. Qingyuan, J.Y. Berard, A. Dubarre et al., Gigacycle Fatigue of Ferrous Alloys, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 667–672CrossRef W. Qingyuan, J.Y. Berard, A. Dubarre et al., Gigacycle Fatigue of Ferrous Alloys, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 667–672CrossRef
24.
Zurück zum Zitat Chuanyao Ch. Fatigue and Fracture. Huazhong Science and Technology University Press, 2002. Chuanyao Ch. Fatigue and Fracture. Huazhong Science and Technology University Press, 2002.
25.
Zurück zum Zitat J. Schijve, A normal Distribution or a Weibull Distribution for Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 1993, 8, p 851–859CrossRef J. Schijve, A normal Distribution or a Weibull Distribution for Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 1993, 8, p 851–859CrossRef
26.
Zurück zum Zitat N. Ranc, D. Wagner, and P.C. Paris, Study of Thermal Effects Associated with Crack Propagation During Very High Cycle Fatigue Tests, Acta Mater., 2008, 56, p 4012–4021CrossRef N. Ranc, D. Wagner, and P.C. Paris, Study of Thermal Effects Associated with Crack Propagation During Very High Cycle Fatigue Tests, Acta Mater., 2008, 56, p 4012–4021CrossRef
27.
Zurück zum Zitat L. Zhengqiang, H. Youshi, X. Jijia et al., Effects of Inclusion Size and locaTIon on Very-High-Cycle Fatigue Behavior for High Strength Steels, Materials Science&EngineeringA, 2012, 558, p 234–241 L. Zhengqiang, H. Youshi, X. Jijia et al., Effects of Inclusion Size and locaTIon on Very-High-Cycle Fatigue Behavior for High Strength Steels, Materials Science&EngineeringA, 2012, 558, p 234–241
28.
Zurück zum Zitat Y. Furuya, H. Hirukawa, T. Kimura et al., Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes, Metall. Mater. Trans. A, 2007, 38, p 1722–1730CrossRef Y. Furuya, H. Hirukawa, T. Kimura et al., Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes, Metall. Mater. Trans. A, 2007, 38, p 1722–1730CrossRef
29.
Zurück zum Zitat S.E. Stanzl-Tschegg, Fracture Mechanisms and Fracture Mechanics at Ultrasonic Frequencies, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 567–579CrossRef S.E. Stanzl-Tschegg, Fracture Mechanisms and Fracture Mechanics at Ultrasonic Frequencies, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 567–579CrossRef
30.
Zurück zum Zitat L. Chengli, Lu Zhengzhou, X. Youliang et al., Reliability Analysis for Low Cycle Fatigue Life of the Aeronautical Engine Turbine Disc Structure Under Random Environment, Mater. Sci. Eng. A, 2005, 395, p 218–225CrossRef L. Chengli, Lu Zhengzhou, X. Youliang et al., Reliability Analysis for Low Cycle Fatigue Life of the Aeronautical Engine Turbine Disc Structure Under Random Environment, Mater. Sci. Eng. A, 2005, 395, p 218–225CrossRef
31.
Zurück zum Zitat P. Liangming, F. Penghuai, L. Zhenming et al., High Cycle Fatigue Behaviors of Low Pressure Cast Mg-3Nd-0.2Zn-2Zr Alloys, Mater. Sci. Eng., A, 2014, 611, p 170–176CrossRef P. Liangming, F. Penghuai, L. Zhenming et al., High Cycle Fatigue Behaviors of Low Pressure Cast Mg-3Nd-0.2Zn-2Zr Alloys, Mater. Sci. Eng., A, 2014, 611, p 170–176CrossRef
32.
Zurück zum Zitat S. Sadek and M. Olsson, New Models for Prediction of High Cycle Fatigue Failure Based on Highly Loaded Regions, Int. J. Fatigue, 2014, 66, p 101–110CrossRef S. Sadek and M. Olsson, New Models for Prediction of High Cycle Fatigue Failure Based on Highly Loaded Regions, Int. J. Fatigue, 2014, 66, p 101–110CrossRef
33.
Zurück zum Zitat Y. Weixing and G. Shenjie, VHCF Test and Life Distribution of Aluminum Alloy LC4CS, Int. J. Fatigue, 2008, 30, p 172–177CrossRef Y. Weixing and G. Shenjie, VHCF Test and Life Distribution of Aluminum Alloy LC4CS, Int. J. Fatigue, 2008, 30, p 172–177CrossRef
34.
Zurück zum Zitat Ch Yueliang, Y. Xiaohua, and Q. Haiqin, Study on Corrosion Damage Distribution Law of Aircraft Structure, Mater. Sci. Eng., 2002, 20(3), p 376–381 Ch Yueliang, Y. Xiaohua, and Q. Haiqin, Study on Corrosion Damage Distribution Law of Aircraft Structure, Mater. Sci. Eng., 2002, 20(3), p 376–381
Metadaten
Titel
A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy
verfasst von
Shengbo Jiao
Chao Gao
Li Cheng
Xiaowei Li
Yu Feng
Publikationsdatum
08.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1930-x

Weitere Artikel der Ausgabe 3/2016

Journal of Materials Engineering and Performance 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.