Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2020

30.11.2019 | ORIGINAL ARTICLE

A wrapper approach-based key temperature point selection and thermal error modeling method

verfasst von: Feng Tan, Congying Deng, Hong Xiao, Jiufei Luo, Shuang Zhao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A wrapper approach-based key temperature point selection and thermal error modeling method is proposed to concurrently screen the optimal key temperature points and construct the thermal error model. This wrapper approach can strengthen the intrinsic relation between the key temperature points and the thermal error model to ensure the strong prediction performance. On the whole, the least squares support vector machine (SVM) is used as the basic thermal error modeling method and the binary bat algorithm (BBA) is used as the optimization algorithm. The selection status of temperature points and the values of hyperparameters γ and σ2 of SVM are coded in separate binary parts of the artificial bat’s position vector of BBA. The cost function is designed by balancing the prediction error and the number of key temperature points. For verification, the thermal error experiment was conducted on a horizontal machining center. Feeding the collected experimental temperature data and thermal error data to the proposed method, three optimal key temperature points were screened out and the corresponding optimal hyperparameters were simultaneously searched. To verify the superiority of the proposed method, the prediction performance comparison analysis was conducted with the conventional filter-based method. Specifically, in the conventional method, the key temperature points were screened by combining fuzzy c means (FCM) clustering and correlation analysis, and the multiple linear regression (MLR), the backpropagation neural network (BPNN), and the SVM were used to build the thermal error model, respectively. Comparison results showed that the prediction accuracy of the proposed method increased by up to 44.0% compared to the conventional method, which suggests the superior prediction performance of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review Part II: thermal errors. Int J of Mach Tools Manuf 40(9):1257–1284CrossRef Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review Part II: thermal errors. Int J of Mach Tools Manuf 40(9):1257–1284CrossRef
2.
Zurück zum Zitat Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRef Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRef
3.
Zurück zum Zitat Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J of Mach Tools Manuf 95(8):20–38CrossRef Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J of Mach Tools Manuf 95(8):20–38CrossRef
4.
Zurück zum Zitat Cao HR, Zhang XW, Chen XF (2017) The concept and progress of intelligent spindles: A review. Int J Mach Tools Manuf 112(1):21–52CrossRef Cao HR, Zhang XW, Chen XF (2017) The concept and progress of intelligent spindles: A review. Int J Mach Tools Manuf 112(1):21–52CrossRef
5.
Zurück zum Zitat Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137(2):42–57CrossRef Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137(2):42–57CrossRef
6.
Zurück zum Zitat Tan F, Wang L, Yin M, Yin GF (2019) Obtaining more accurate convective heat transfer coefficients in thermal analysis of spindle using surrogate assisted differential evolution method. Appl Therm Eng 149(2):1335–1344CrossRef Tan F, Wang L, Yin M, Yin GF (2019) Obtaining more accurate convective heat transfer coefficients in thermal analysis of spindle using surrogate assisted differential evolution method. Appl Therm Eng 149(2):1335–1344CrossRef
7.
Zurück zum Zitat Sun LJ, Ren MJ, Hong HB, Yin YH (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5-8):1267–1277CrossRef Sun LJ, Ren MJ, Hong HB, Yin YH (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5-8):1267–1277CrossRef
8.
Zurück zum Zitat Liu T, Gao WG, Zhang DW, Zhang YF, Chang WF, Liang CM, Tian YL (2017) Analytical modeling for thermal errors of motorized spindle unit. Int J of Mach Tools Manuf 112(1):53–70CrossRef Liu T, Gao WG, Zhang DW, Zhang YF, Chang WF, Liang CM, Tian YL (2017) Analytical modeling for thermal errors of motorized spindle unit. Int J of Mach Tools Manuf 112(1):53–70CrossRef
9.
Zurück zum Zitat Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J of Mach Tools Manuf 50(4):386–393CrossRef Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J of Mach Tools Manuf 50(4):386–393CrossRef
10.
Zurück zum Zitat Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1-4):389–400CrossRef Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1-4):389–400CrossRef
11.
Zurück zum Zitat Du ZC, Yao XD, Hou HF, Yang JG (2018) A fast way to determine temperature sensor locations in thermal error compensation. Int J Adv Manuf Technol 97(1-4):455–465CrossRef Du ZC, Yao XD, Hou HF, Yang JG (2018) A fast way to determine temperature sensor locations in thermal error compensation. Int J Adv Manuf Technol 97(1-4):455–465CrossRef
12.
Zurück zum Zitat Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127CrossRef Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127CrossRef
13.
Zurück zum Zitat Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27(2):158–168CrossRef Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27(2):158–168CrossRef
14.
Zurück zum Zitat Liu H, Miao EM, Zhuang XD, Wei XY (2018) Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm. Precis Eng 51(1):169–175CrossRef Liu H, Miao EM, Zhuang XD, Wei XY (2018) Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm. Precis Eng 51(1):169–175CrossRef
15.
Zurück zum Zitat Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2016) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J of Adv Manuf Technol 83(5):995–1002CrossRef Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2016) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J of Adv Manuf Technol 83(5):995–1002CrossRef
16.
Zurück zum Zitat Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9):3071–3085CrossRef Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9):3071–3085CrossRef
17.
Zurück zum Zitat Liu Q, Yan JW, Pham DT, Zhou ZD, Xu WJ, Wei Q, Ji CQ (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1-4):345–353CrossRef Liu Q, Yan JW, Pham DT, Zhou ZD, Xu WJ, Wei Q, Ji CQ (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1-4):345–353CrossRef
18.
Zurück zum Zitat Hey J, Sing TC, Liang TJ (2018) Sensor selection method to accurately model the thermal error in a spindle motor. IEEE T Ind Inform 14(7):2925–2931CrossRef Hey J, Sing TC, Liang TJ (2018) Sensor selection method to accurately model the thermal error in a spindle motor. IEEE T Ind Inform 14(7):2925–2931CrossRef
19.
Zurück zum Zitat Miao EM, Liu Y, Liu H, Gao ZH, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97(10):50–59CrossRef Miao EM, Liu Y, Liu H, Gao ZH, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97(10):50–59CrossRef
20.
Zurück zum Zitat Cheng Q, Qi Z, Zhang GJ, Zhao YS, Sun BW, Gu PH (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5):753–764CrossRef Cheng Q, Qi Z, Zhang GJ, Zhao YS, Sun BW, Gu PH (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5):753–764CrossRef
21.
Zurück zum Zitat Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5-8):1005–1017CrossRef Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5-8):1005–1017CrossRef
22.
Zurück zum Zitat Li Y, Zhao J, Ji SJ, Liang FS (2019) The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools. Int J of Adv Manuf Technol 100(9-12):2333–2348CrossRef Li Y, Zhao J, Ji SJ, Liang FS (2019) The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools. Int J of Adv Manuf Technol 100(9-12):2333–2348CrossRef
23.
Zurück zum Zitat Yin Q, Tan F, Chen HX, Yin GF (2019) Spindle thermal error modeling based on selective ensemble BP neural networks. Int J Adv Manuf Technol 101(5-8):1699–1713CrossRef Yin Q, Tan F, Chen HX, Yin GF (2019) Spindle thermal error modeling based on selective ensemble BP neural networks. Int J Adv Manuf Technol 101(5-8):1699–1713CrossRef
24.
Zurück zum Zitat Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific
25.
Zurück zum Zitat 230-3 ISO (2007) Test code for machine tools part 3: determination of thermal effects. ISO copyright office, Geneva 230-3 ISO (2007) Test code for machine tools part 3: determination of thermal effects. ISO copyright office, Geneva
26.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Yang X (2014) Binary bat algorithm. Neural Comput Appl 25(3-4):663–681CrossRef Mirjalili S, Mirjalili SM, Yang X (2014) Binary bat algorithm. Neural Comput Appl 25(3-4):663–681CrossRef
Metadaten
Titel
A wrapper approach-based key temperature point selection and thermal error modeling method
verfasst von
Feng Tan
Congying Deng
Hong Xiao
Jiufei Luo
Shuang Zhao
Publikationsdatum
30.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04647-5

Weitere Artikel der Ausgabe 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.