Skip to main content

2013 | OriginalPaper | Buchkapitel

6. Abrasive Water Jet Milling

verfasst von : Mukul Shukla

Erschienen in: Nontraditional Machining Processes

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abrasive water jet (AWJ) machining and abrasive water jet cutting (AWJC) are widely used, especially where very hard materials like titanium (Ti) alloys, high-strength steel, ceramics, etc. need to be machined or cut. In this chapter, an overview of the abrasive water jet milling (AWJM) process is presented. The essential challenge is at controlling the depth of cut (DoC) produced by varying the important AWJ machining process parameters. Experimental studies, process modeling and control based on FEM, artificial intelligence techniques and regression, and mechanisms of material removal are covered from the recent literature with the focus being on Titanium alloys. Experimental study and nonlinear regression–based process modeling of controlled depth AWJ milling of Grade 2 Ti alloy is also presented. Finally, various challenges including scope of future research in AWJM are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Fowler G (2003) Abrasive water-jet-controlled depth milling of titanium alloys. PhD Thesis, Nottingham University, pp 4–56 Fowler G (2003) Abrasive water-jet-controlled depth milling of titanium alloys. PhD Thesis, Nottingham University, pp 4–56
5.
Zurück zum Zitat Hashish M (1987) Conference on wear of materials. In: Proceedings of Internet Texas, ASME, NY, pp 769–776 Hashish M (1987) Conference on wear of materials. In: Proceedings of Internet Texas, ASME, NY, pp 769–776
7.
Zurück zum Zitat Gudani R, Shukla M (2012) Controlled depth abrasive water jet cutting of grade 2 titanium and regression modeling. Int J Mech Eng Mater Sci 5(2):117–122 Gudani R, Shukla M (2012) Controlled depth abrasive water jet cutting of grade 2 titanium and regression modeling. Int J Mech Eng Mater Sci 5(2):117–122
8.
Zurück zum Zitat Siddiqui TU (2010) Abrasive water jet cutting of continuous fiber-reinforced polymer composites: experimental studies, modeling and multi-objective optimization. Unpublished PhD thesis, MNNIT Allahabad Siddiqui TU (2010) Abrasive water jet cutting of continuous fiber-reinforced polymer composites: experimental studies, modeling and multi-objective optimization. Unpublished PhD thesis, MNNIT Allahabad
9.
Zurück zum Zitat Hashish M (1994) Three-dimensional machining with abrasive waterjets, waterjet cutting technology. Mechanical Engineering Publications, Ltd, London, pp 605–633 Hashish M (1994) Three-dimensional machining with abrasive waterjets, waterjet cutting technology. Mechanical Engineering Publications, Ltd, London, pp 605–633
10.
Zurück zum Zitat Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. Trans ASME 119:776–785 Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. Trans ASME 119:776–785
11.
Zurück zum Zitat Folkes J (2009) Waterjet–an innovative tool for manufacturing. J Mater Process Technol 209(20):6181–6189CrossRef Folkes J (2009) Waterjet–an innovative tool for manufacturing. J Mater Process Technol 209(20):6181–6189CrossRef
12.
Zurück zum Zitat Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy—an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161:407–414CrossRef Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy—an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161:407–414CrossRef
13.
Zurück zum Zitat Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance materials. In: 5th CIRP conference on high performance cutting 2012, Procedia CIRP 1, pp 409–413 Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance materials. In: 5th CIRP conference on high performance cutting 2012, Procedia CIRP 1, pp 409–413
14.
Zurück zum Zitat Manu R, Ramesh Babu N (2008) Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys. Int J Mach Mach Mater 3(1/2):120–132 Manu R, Ramesh Babu N (2008) Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys. Int J Mach Mach Mater 3(1/2):120–132
15.
Zurück zum Zitat Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49(3–4):351–356CrossRef Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49(3–4):351–356CrossRef
16.
Zurück zum Zitat Siddiqui TU, Shukla M (2011) Abrasive waterjet hole trepanning of thick Kevlar-epoxy composites for ballistic applications–experimental investigations and analysis using design of experiments methodology. Int J Mach Mach Mater 10(3):172–186 Siddiqui TU, Shukla M (2011) Abrasive waterjet hole trepanning of thick Kevlar-epoxy composites for ballistic applications–experimental investigations and analysis using design of experiments methodology. Int J Mach Mach Mater 10(3):172–186
17.
Zurück zum Zitat Hashish M (1987) Turning with abrasive waterjets—a first investigation. ASME J Eng Indus 109(4):281–290CrossRef Hashish M (1987) Turning with abrasive waterjets—a first investigation. ASME J Eng Indus 109(4):281–290CrossRef
18.
Zurück zum Zitat Hashish M (1991) Characteristics of surfaces machined with abrasive waterjets. J Eng Mater Technol Trans ASME 113(3):354–362CrossRef Hashish M (1991) Characteristics of surfaces machined with abrasive waterjets. J Eng Mater Technol Trans ASME 113(3):354–362CrossRef
19.
Zurück zum Zitat Selvan MCP, Raju NMS (2011) Review of the current state of research and development in abrasive waterjet cutting. Int J Adv Eng Sci Technol 11(2):267–275 Selvan MCP, Raju NMS (2011) Review of the current state of research and development in abrasive waterjet cutting. Int J Adv Eng Sci Technol 11(2):267–275
20.
Zurück zum Zitat N. Yusup, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007–2011). Expert Syst Appl 39:9909–9927 N. Yusup, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007–2011). Expert Syst Appl 39:9909–9927
21.
Zurück zum Zitat Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217CrossRef Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217CrossRef
22.
Zurück zum Zitat Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73:179–188CrossRef Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73:179–188CrossRef
23.
Zurück zum Zitat Hashish M, Monserud D (1990) Abrasive waterjet machining of isogrid structures. Quest Integrated Inc., Report QUEST TR-508, pp 63 Hashish M, Monserud D (1990) Abrasive waterjet machining of isogrid structures. Quest Integrated Inc., Report QUEST TR-508, pp 63
24.
Zurück zum Zitat Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258:123–132CrossRef Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258:123–132CrossRef
25.
Zurück zum Zitat Fowler G, Shipway PH, Pashby IR (2008) An investigation of the role of jet impingement angle on process efficiency and surface characteristics for abrasive waterjet milling of Ti6A14V. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 353–364 Fowler G, Shipway PH, Pashby IR (2008) An investigation of the role of jet impingement angle on process efficiency and surface characteristics for abrasive waterjet milling of Ti6A14V. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 353–364
26.
Zurück zum Zitat Hashish M (2008) Waterjet pocket milling of titanium aluminide. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 365–376 Hashish M (2008) Waterjet pocket milling of titanium aluminide. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 365–376
27.
Zurück zum Zitat Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613–620CrossRef Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613–620CrossRef
28.
Zurück zum Zitat Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49:1077–1088CrossRef Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49:1077–1088CrossRef
29.
Zurück zum Zitat Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49(7–8):569–578CrossRef Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49(7–8):569–578CrossRef
30.
Zurück zum Zitat Hloch S, Valicek J (2011) Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int J Surf Sci Eng 5(2/3) Hloch S, Valicek J (2011) Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int J Surf Sci Eng 5(2/3)
31.
Zurück zum Zitat Dadkhahipour K, Nguyen T, Wang J (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear 292–293:1–10CrossRef Dadkhahipour K, Nguyen T, Wang J (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear 292–293:1–10CrossRef
32.
Zurück zum Zitat Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channelling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53:118–126CrossRef Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channelling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53:118–126CrossRef
33.
Zurück zum Zitat Rabani A, Marinescu I, Axinte D (2012) Acoustic emission energy transfer rate: a method for monitoring abrasive waterjet milling. Int J Mach Tools Manuf 61:80–89 Rabani A, Marinescu I, Axinte D (2012) Acoustic emission energy transfer rate: a method for monitoring abrasive waterjet milling. Int J Mach Tools Manuf 61:80–89
34.
Zurück zum Zitat Alberdi A, Rivero A, de Lacalle LNL (2011) Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling. J Manuf Sci Eng 133(3):034502CrossRef Alberdi A, Rivero A, de Lacalle LNL (2011) Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling. J Manuf Sci Eng 133(3):034502CrossRef
35.
Zurück zum Zitat Alberdi A, Rivero A, Carrascal A, Lamikiz A (2012) Kerf profile modelling in abrasive waterjet milling. Mater Sci Forum 713:91–96CrossRef Alberdi A, Rivero A, Carrascal A, Lamikiz A (2012) Kerf profile modelling in abrasive waterjet milling. Mater Sci Forum 713:91–96CrossRef
36.
Zurück zum Zitat Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol 213:180–193CrossRef Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol 213:180–193CrossRef
37.
Zurück zum Zitat Kovacevic R, Yong Z (1996) Modeling of 3D abrasive waterjet machining, part I: theoretical basis, jetting technology. Institution of Mechanical Engineers, pp 73–82 Kovacevic R, Yong Z (1996) Modeling of 3D abrasive waterjet machining, part I: theoretical basis, jetting technology. Institution of Mechanical Engineers, pp 73–82
38.
Zurück zum Zitat Yong Z, Kovacevic R (1996) Modeling of 3D abrasive waterjet machining, part II: simulation of machining, jetting technology. Institution of Mechanical Engineers, pp 83–89 Yong Z, Kovacevic R (1996) Modeling of 3D abrasive waterjet machining, part II: simulation of machining, jetting technology. Institution of Mechanical Engineers, pp 83–89
39.
Zurück zum Zitat Duflou JR, Kruth JP, Bohez EL (2001) Contour cutting of pre-formed parts with abrasive waterjet using 3-axis nozzle control. J Mater Process Technol 115(1):38–43CrossRef Duflou JR, Kruth JP, Bohez EL (2001) Contour cutting of pre-formed parts with abrasive waterjet using 3-axis nozzle control. J Mater Process Technol 115(1):38–43CrossRef
40.
Zurück zum Zitat Hashish M (2005) Economics of abrasive-waterjet cutting at 600 MPA pressure. In: Proceedings of WJTA American waterjet conference, Houston, Texas, Paper 4A-3, pp 1–14 Hashish M (2005) Economics of abrasive-waterjet cutting at 600 MPA pressure. In: Proceedings of WJTA American waterjet conference, Houston, Texas, Paper 4A-3, pp 1–14
41.
Zurück zum Zitat Hoogstrate AM, Susuzlu T, Karpuschewski B (2006) High performance cutting with abrasive waterjets beyond 400 MPa. CIRP Ann Manuf Technol 55(1):1–4CrossRef Hoogstrate AM, Susuzlu T, Karpuschewski B (2006) High performance cutting with abrasive waterjets beyond 400 MPa. CIRP Ann Manuf Technol 55(1):1–4CrossRef
42.
Zurück zum Zitat Boud F, Carpenter C, Folkes J, Shipway PH (2010) Abrasive waterjet cutting of a titanium alloy: the influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality. J Mater Process Technol 210(15):2197–2205 Boud F, Carpenter C, Folkes J, Shipway PH (2010) Abrasive waterjet cutting of a titanium alloy: the influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality. J Mater Process Technol 210(15):2197–2205
43.
Zurück zum Zitat Kong MC, Anwar S, Billingham J, Axinte DA (2012) Mathematical modeling of abrasive waterjet footprints for arbitrarily moving jets: partI—single straight paths. Int J Mach Tools Manuf 53:58–68CrossRef Kong MC, Anwar S, Billingham J, Axinte DA (2012) Mathematical modeling of abrasive waterjet footprints for arbitrarily moving jets: partI—single straight paths. Int J Mach Tools Manuf 53:58–68CrossRef
44.
Zurück zum Zitat Palafox GAE, Gault RS, Ridgway K (2012) Characterisation of abrasive water-jet process for pocket milling in Inconel 718. In: 5th CIRP conference on high performance cutting, procedia CIRP 1 (2012), pp 404–408 Palafox GAE, Gault RS, Ridgway K (2012) Characterisation of abrasive water-jet process for pocket milling in Inconel 718. In: 5th CIRP conference on high performance cutting, procedia CIRP 1 (2012), pp 404–408
45.
Zurück zum Zitat Evans AG, Gulden ME, Rosenblatt ME (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proc R Soc Lon A 361:343–365 Evans AG, Gulden ME, Rosenblatt ME (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proc R Soc Lon A 361:343–365
46.
Zurück zum Zitat Abdel-Rahman AA, El-Domiaty AA (1998) Maximum depth of cut for ceramics using abrasive waterjet technique. Wear 218(2):216–222 Abdel-Rahman AA, El-Domiaty AA (1998) Maximum depth of cut for ceramics using abrasive waterjet technique. Wear 218(2):216–222
47.
Zurück zum Zitat Hassan A, Chen C, Kovacevic R (2004) On-line monitoring of depth of cut in AWJ cutting. Int J Mach Tools Manuf 44:595–605CrossRef Hassan A, Chen C, Kovacevic R (2004) On-line monitoring of depth of cut in AWJ cutting. Int J Mach Tools Manuf 44:595–605CrossRef
48.
Zurück zum Zitat Lemma E, Deam R, Chen L (2005) Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. J Mater Process Technol 160(2):188–197CrossRef Lemma E, Deam R, Chen L (2005) Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. J Mater Process Technol 160(2):188–197CrossRef
49.
Zurück zum Zitat Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49(3):306–316CrossRef Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49(3):306–316CrossRef
50.
Zurück zum Zitat Wang J (2009) A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. J Mater Process Technol 209(5):2314–2320CrossRef Wang J (2009) A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. J Mater Process Technol 209(5):2314–2320CrossRef
51.
Zurück zum Zitat Kumar N, Shukla M (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J Comput Appl Math 236(18):4600–4610MATHCrossRef Kumar N, Shukla M (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J Comput Appl Math 236(18):4600–4610MATHCrossRef
52.
Zurück zum Zitat Vikram G, Ramesh Babu N (2002) Modelling and analysis of abrasive waterjet cut surface topography. Int J Mach Tools Manuf 42:1345–1354 Vikram G, Ramesh Babu N (2002) Modelling and analysis of abrasive waterjet cut surface topography. Int J Mach Tools Manuf 42:1345–1354
53.
Zurück zum Zitat Hlavac LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161CrossRef Hlavac LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161CrossRef
54.
Zurück zum Zitat Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34(1):55–72CrossRef Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34(1):55–72CrossRef
55.
Zurück zum Zitat Srinivasu DS, Ramesh Babu N (2008) A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl Soft Comput 8(1):809–819CrossRef Srinivasu DS, Ramesh Babu N (2008) A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl Soft Comput 8(1):809–819CrossRef
56.
Zurück zum Zitat Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326CrossRef Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326CrossRef
57.
Zurück zum Zitat Zain AM, Haron H, Sharif S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Appl Soft Comput 11:5350–5359CrossRef Zain AM, Haron H, Sharif S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Appl Soft Comput 11:5350–5359CrossRef
58.
Zurück zum Zitat Vundavilli PR, Parappagoudar MB, Kodali SP, Benguluri S (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-Based Systems 27:456–464 Vundavilli PR, Parappagoudar MB, Kodali SP, Benguluri S (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-Based Systems 27:456–464
59.
Zurück zum Zitat Kumar N, Shukla M, Patel RK (2010) Finite element modeling of erosive wear in abrasive jet machining. In: International conference on theoretical, applied, computational and experimental mechanics, ICTACEM, IIT Kharagpur, India, Paper 168 Kumar N, Shukla M, Patel RK (2010) Finite element modeling of erosive wear in abrasive jet machining. In: International conference on theoretical, applied, computational and experimental mechanics, ICTACEM, IIT Kharagpur, India, Paper 168
60.
Zurück zum Zitat Hassan AI, Kosmol J (2000) Finite element modeling of abrasive water-jet machining. In: Proceedings of the 15th International conference on jetting technology. Ronneby (Sweden): BHR Group, pp 321–33 Hassan AI, Kosmol J (2000) Finite element modeling of abrasive water-jet machining. In: Proceedings of the 15th International conference on jetting technology. Ronneby (Sweden): BHR Group, pp 321–33
61.
Zurück zum Zitat Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:7 Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:7
62.
Zurück zum Zitat Ahmadi-Brooghani SY, Hassanzadeh H, Kahhal P (2007) Modeling of single-particle impact in abrasive water jet machining. Int J Mech Sys Sci Eng 1:4 Ahmadi-Brooghani SY, Hassanzadeh H, Kahhal P (2007) Modeling of single-particle impact in abrasive water jet machining. Int J Mech Sys Sci Eng 1:4
63.
Zurück zum Zitat Takaffoli M, Papini M (2009) Finite element analysis of single impacts of angular particles on ductile targets. Wear 267:144–151CrossRef Takaffoli M, Papini M (2009) Finite element analysis of single impacts of angular particles on ductile targets. Wear 267:144–151CrossRef
64.
Zurück zum Zitat Anwar S, Axinte DA, Becker AA (2011) Finite element modelling of a single-particle impact during abrasive waterjet milling. In: Proceedings of the Institution of Mechanical Engineers, part J: Journal of Engineering Tribology, August 2011, vol 225, 8, pp 821–832 Anwar S, Axinte DA, Becker AA (2011) Finite element modelling of a single-particle impact during abrasive waterjet milling. In: Proceedings of the Institution of Mechanical Engineers, part J: Journal of Engineering Tribology, August 2011, vol 225, 8, pp 821–832
65.
Zurück zum Zitat ElTobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346CrossRef ElTobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346CrossRef
66.
Zurück zum Zitat Molinari JF, Ortiz M (2002) A study of solid-particle erosion of metallic targets. Impact Eng 27:347–358CrossRef Molinari JF, Ortiz M (2002) A study of solid-particle erosion of metallic targets. Impact Eng 27:347–358CrossRef
67.
Zurück zum Zitat Shimizu K, Noguchi T, Seitoh H, Okadab M, Matsubara Y (2001) FEM analysis of erosive wear. Wear 250:779–784CrossRef Shimizu K, Noguchi T, Seitoh H, Okadab M, Matsubara Y (2001) FEM analysis of erosive wear. Wear 250:779–784CrossRef
69.
Zurück zum Zitat Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Process Technol 210(1):190–196CrossRef Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Process Technol 210(1):190–196CrossRef
74.
Zurück zum Zitat Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, LondonMATHCrossRef Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, LondonMATHCrossRef
75.
Zurück zum Zitat Montgomery DC (2001) Design and analysis of experiments, 5th edn. Oxford Publications, New York Montgomery DC (2001) Design and analysis of experiments, 5th edn. Oxford Publications, New York
76.
Zurück zum Zitat Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306–316 Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306–316
77.
Zurück zum Zitat Siddiqui TU, Shukla M (2010) Modeling of depth of cut in abrasive waterjet cutting of thick kevlar-epoxy composites. Key Eng Mater 443:423–427CrossRef Siddiqui TU, Shukla M (2010) Modeling of depth of cut in abrasive waterjet cutting of thick kevlar-epoxy composites. Key Eng Mater 443:423–427CrossRef
80.
Zurück zum Zitat Alberdi A, Rivero A, López de Lacalle LN, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480CrossRef Alberdi A, Rivero A, López de Lacalle LN, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480CrossRef
81.
Zurück zum Zitat Shukla M, Tambe PB (2013) Genetic algorithm based optimization of material removal rate with surface finish constraints in abrasive water jet cutting of carbon-epoxy composites. Accepted in Natural Computing Shukla M, Tambe PB (2013) Genetic algorithm based optimization of material removal rate with surface finish constraints in abrasive water jet cutting of carbon-epoxy composites. Accepted in Natural Computing
82.
Zurück zum Zitat Siddiqui TU, Shukla M (2012) Modeling and optimization of abrasive water jet cutting of kevlar fiber-reinforced polymer composites, in “computational methods for optimizing manufacturing technology—models and techniques”. IGI Global, USA, pp 262–286 Siddiqui TU, Shukla M (2012) Modeling and optimization of abrasive water jet cutting of kevlar fiber-reinforced polymer composites, in “computational methods for optimizing manufacturing technology—models and techniques”. IGI Global, USA, pp 262–286
83.
Zurück zum Zitat Shukla M, Tambe PB (2010) Predictive modeling of surface roughness and kerf widths in abrasive water jet cutting of kevlar composites using neural network. Int J Mach Mach Mater 8(1 & 2):226–246 Shukla M, Tambe PB (2010) Predictive modeling of surface roughness and kerf widths in abrasive water jet cutting of kevlar composites using neural network. Int J Mach Mach Mater 8(1 & 2):226–246
84.
Zurück zum Zitat Borkowski J (2010) Application of abrasive-water jet technology for material sculpturing. Trans Can Soc Mech Eng 34(3–4):389–398MathSciNet Borkowski J (2010) Application of abrasive-water jet technology for material sculpturing. Trans Can Soc Mech Eng 34(3–4):389–398MathSciNet
Metadaten
Titel
Abrasive Water Jet Milling
verfasst von
Mukul Shukla
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5179-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.