Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2011

01.08.2011 | Research Paper

Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

verfasst von: Hadas Skaat, Gilead Shafir, Shlomo Margel

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS–PEG–NHS) to the F-γ-Fe2O3~HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS–PEG–NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3~HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adessi C, Frossard MJ, Biossard C, Fraga S, Bieler S, Ruckle T, Vilbois F, Robinson SM, Mutter M, Banks WA, Soto C (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer disease. J Biol Chem 278:13905–13911CrossRef Adessi C, Frossard MJ, Biossard C, Fraga S, Bieler S, Ruckle T, Vilbois F, Robinson SM, Mutter M, Banks WA, Soto C (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer disease. J Biol Chem 278:13905–13911CrossRef
Zurück zum Zitat Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9:1960–1967CrossRef Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9:1960–1967CrossRef
Zurück zum Zitat Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson K, Linse S (2008) Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443CrossRef Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson K, Linse S (2008) Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443CrossRef
Zurück zum Zitat Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine peptides. Protein Sci 10:887–891CrossRef Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine peptides. Protein Sci 10:887–891CrossRef
Zurück zum Zitat Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRef Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRef
Zurück zum Zitat Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104CrossRef Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104CrossRef
Zurück zum Zitat Cox DL, Lashuel H, Lee KYC, Singh RRP (2005) The materials science of protein aggregation. MRS Bull 30:452–457CrossRef Cox DL, Lashuel H, Lee KYC, Singh RRP (2005) The materials science of protein aggregation. MRS Bull 30:452–457CrossRef
Zurück zum Zitat Cui ZR, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ (2005) Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59:263–272CrossRef Cui ZR, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ (2005) Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59:263–272CrossRef
Zurück zum Zitat De Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRef De Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRef
Zurück zum Zitat Fei L, Perrett S (2009) Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci 10:646–655CrossRef Fei L, Perrett S (2009) Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci 10:646–655CrossRef
Zurück zum Zitat Griffiths HH, Morten IJ, Hooper NM (2008) Emerging and potential therapies for Alzheimer’s disease. Expert Opin Ther Targets 12:693–704CrossRef Griffiths HH, Morten IJ, Hooper NM (2008) Emerging and potential therapies for Alzheimer’s disease. Expert Opin Ther Targets 12:693–704CrossRef
Zurück zum Zitat Haass C, Schlossmacher MG, Hung AY, Vigopelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid beta-peptide is produced by cultured-cells during normal metabolism. Nature 359:322–325CrossRef Haass C, Schlossmacher MG, Hung AY, Vigopelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid beta-peptide is produced by cultured-cells during normal metabolism. Nature 359:322–325CrossRef
Zurück zum Zitat Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRef Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRef
Zurück zum Zitat Ji XJ, Naistat D, Li CQ, Orbulescu J, Leblanc RM (2006) An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments A beta (31–35), A beta (1–40) and A beta (1–42). Colloid Surf B Biointerfaces 50:104–111CrossRef Ji XJ, Naistat D, Li CQ, Orbulescu J, Leblanc RM (2006) An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments A beta (31–35), A beta (1–40) and A beta (1–42). Colloid Surf B Biointerfaces 50:104–111CrossRef
Zurück zum Zitat Klunk WE, Debnath ML, Koros AMC, Pettegrew JW (1998) Chrysamine-G, a lipophilic analogue of Congo red, inhibits A beta-induced toxicity in PC12 cells. Life Sci 63:1807–1814CrossRef Klunk WE, Debnath ML, Koros AMC, Pettegrew JW (1998) Chrysamine-G, a lipophilic analogue of Congo red, inhibits A beta-induced toxicity in PC12 cells. Life Sci 63:1807–1814CrossRef
Zurück zum Zitat Klunk WE, Wang YM, Huang GF, Debnath ML, Holt DP, Mathis CA (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69:1471–1484CrossRef Klunk WE, Wang YM, Huang GF, Debnath ML, Holt DP, Mathis CA (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69:1471–1484CrossRef
Zurück zum Zitat Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6:110–115CrossRef Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6:110–115CrossRef
Zurück zum Zitat Kung HF (2004) Imaging of Aβ plaques in the brain of Alzheimer’s disease. ICS 1264:3–9 Kung HF (2004) Imaging of Aβ plaques in the brain of Alzheimer’s disease. ICS 1264:3–9
Zurück zum Zitat Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779CrossRef Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779CrossRef
Zurück zum Zitat Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM (2002) Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical. J Cereb Blood Flow Metab 22:223–231CrossRef Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM (2002) Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical. J Cereb Blood Flow Metab 22:223–231CrossRef
Zurück zum Zitat Levine H (1995) Thioflavine T interaction with amyloid β-sheet structures. Amyloid 2:1–6CrossRef Levine H (1995) Thioflavine T interaction with amyloid β-sheet structures. Amyloid 2:1–6CrossRef
Zurück zum Zitat Link CD, Johnson CJ, Fonte V, Paupard MC, Hall DH, Styren S, Mathis CA, Klunk WE (2001) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22:217–226CrossRef Link CD, Johnson CJ, Fonte V, Paupard MC, Hall DH, Styren S, Mathis CA, Klunk WE (2001) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22:217–226CrossRef
Zurück zum Zitat Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104:8691–8696CrossRef Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104:8691–8696CrossRef
Zurück zum Zitat Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC, Vigna SR, Vinters HV, Labenski ME, Mantyh PW (1992) Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of labeled amyloid peptide. Proc Natl Acad Sci USA 89:5462–5466CrossRef Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC, Vigna SR, Vinters HV, Labenski ME, Mantyh PW (1992) Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of labeled amyloid peptide. Proc Natl Acad Sci USA 89:5462–5466CrossRef
Zurück zum Zitat Margel S, Gura S. Nucleation and growth of magnetic metal oxide nanoparticles and its use. WO/1999/062079; EC 1088315 (2003); Israel 139638 (2006) Margel S, Gura S. Nucleation and growth of magnetic metal oxide nanoparticles and its use. WO/1999/062079; EC 1088315 (2003); Israel 139638 (2006)
Zurück zum Zitat Margel S, Tennenbaum T, Gura S, Tsubery M (2007) In: Zborowski M (ed) Laboratory techniques in biochemistry and molecular biology. Elsevier B.V., Amsterdam Margel S, Tennenbaum T, Gura S, Tsubery M (2007) In: Zborowski M (ed) Laboratory techniques in biochemistry and molecular biology. Elsevier B.V., Amsterdam
Zurück zum Zitat Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249CrossRef Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249CrossRef
Zurück zum Zitat Mathis CA, Lopresti BJ, Klunk WE (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl Med Biol 34:809–822CrossRef Mathis CA, Lopresti BJ, Klunk WE (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl Med Biol 34:809–822CrossRef
Zurück zum Zitat Niedre M, Ntziachristos V (2008) Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging. Proc IEEE 96:382–396CrossRef Niedre M, Ntziachristos V (2008) Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging. Proc IEEE 96:382–396CrossRef
Zurück zum Zitat Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Lueje A, Giralt E, Kogan MJ (2008) How changes in the sequence of the peptide CLPFFD-NH can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils. Bioconjug Chem 19:1154–1163CrossRef Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Lueje A, Giralt E, Kogan MJ (2008) How changes in the sequence of the peptide CLPFFD-NH can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils. Bioconjug Chem 19:1154–1163CrossRef
Zurück zum Zitat Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology 10:153–161CrossRef Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology 10:153–161CrossRef
Zurück zum Zitat Perlstein B, Lublin-Tennenbaum T, Marom I, Margel S (2009) Synthesis and characterization of functionalized magnetic nanoparticles with fluorescent probe capabilities for biological applications. J Biomed Mat Res B. doi:10.1002/jbm.b.31521 Perlstein B, Lublin-Tennenbaum T, Marom I, Margel S (2009) Synthesis and characterization of functionalized magnetic nanoparticles with fluorescent probe capabilities for biological applications. J Biomed Mat Res B. doi:10.​1002/​jbm.​b.​31521
Zurück zum Zitat Quarta A, Corato RD, Manna L, Ragusa AARA, Pellegrino TAPT (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. Nanobiosci IEEE Trans 6:298–308CrossRef Quarta A, Corato RD, Manna L, Ragusa AARA, Pellegrino TAPT (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. Nanobiosci IEEE Trans 6:298–308CrossRef
Zurück zum Zitat Rocha S, Thunemann AF, Pereira MC, Coelho MAN, Mohwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42CrossRef Rocha S, Thunemann AF, Pereira MC, Coelho MAN, Mohwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42CrossRef
Zurück zum Zitat Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21:1411–1420CrossRef Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21:1411–1420CrossRef
Zurück zum Zitat Sair HI, Doraiswamy PM, Petrella JR (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46:93–104CrossRef Sair HI, Doraiswamy PM, Petrella JR (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46:93–104CrossRef
Zurück zum Zitat Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109CrossRef Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109CrossRef
Zurück zum Zitat Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766 Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766
Zurück zum Zitat Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904CrossRef Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904CrossRef
Zurück zum Zitat Sethuraman A, Belfort G (2005) Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J 88:1322–1333CrossRef Sethuraman A, Belfort G (2005) Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J 88:1322–1333CrossRef
Zurück zum Zitat Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G (2004) Protein unfolding at interfaces: Slow dynamics of alpha-helix to beta-sheet transition. Proteins Struct Funct Bioinform 56:669–678CrossRef Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G (2004) Protein unfolding at interfaces: Slow dynamics of alpha-helix to beta-sheet transition. Proteins Struct Funct Bioinform 56:669–678CrossRef
Zurück zum Zitat Seubert P, Vigopelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, Mccormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimers beta-peptide from biological-fluids. Nature 359:325–327CrossRef Seubert P, Vigopelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, Mccormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimers beta-peptide from biological-fluids. Nature 359:325–327CrossRef
Zurück zum Zitat Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Lanmark KJ, Baker JR (2008) Dendrimer-functionalized shell-cross linked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678CrossRef Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Lanmark KJ, Baker JR (2008) Dendrimer-functionalized shell-cross linked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678CrossRef
Zurück zum Zitat Skaat H, Margel S (2009a) Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology 20:225106–225115CrossRef Skaat H, Margel S (2009a) Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology 20:225106–225115CrossRef
Zurück zum Zitat Skaat H, Margel S (2009b) Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils and removal by a magnetic field. Biochem Biophys Res Commun 386:645–649CrossRef Skaat H, Margel S (2009b) Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils and removal by a magnetic field. Biochem Biophys Res Commun 386:645–649CrossRef
Zurück zum Zitat Skaat H, Sorci M, Georges B, Margel S (2008) Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field. J Biomed Mat Res A 91A:342–351CrossRef Skaat H, Sorci M, Georges B, Margel S (2008) Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field. J Biomed Mat Res A 91A:342–351CrossRef
Zurück zum Zitat Sunde M, Blake CC (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys 31:1–39CrossRef Sunde M, Blake CC (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys 31:1–39CrossRef
Zurück zum Zitat Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768CrossRef Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768CrossRef
Zurück zum Zitat Wengenack TM, Curran GL, Poduslo JF (2000) Targeting Alzheimer amyloid plaques in vivo. Nat Biotechnol 18:868–872CrossRef Wengenack TM, Curran GL, Poduslo JF (2000) Targeting Alzheimer amyloid plaques in vivo. Nat Biotechnol 18:868–872CrossRef
Zurück zum Zitat Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q, Zhao YF, Li YM (2008) TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–318CrossRef Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q, Zhao YF, Li YM (2008) TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–318CrossRef
Zurück zum Zitat Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, Yoon HG, Suh JS, Huh YM, Haam S (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555CrossRef Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, Yoon HG, Suh JS, Huh YM, Haam S (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555CrossRef
Zurück zum Zitat Ziv O, Avtailion R, Margel S (2008) Acquired and natural immunogenicity of gelatin, dextran and human serum albumin conjugated to magnetite nanoparticles. J Biomed Mat Res A 85:1011–1021CrossRef Ziv O, Avtailion R, Margel S (2008) Acquired and natural immunogenicity of gelatin, dextran and human serum albumin conjugated to magnetite nanoparticles. J Biomed Mat Res A 85:1011–1021CrossRef
Metadaten
Titel
Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles
verfasst von
Hadas Skaat
Gilead Shafir
Shlomo Margel
Publikationsdatum
01.08.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0276-4

Weitere Artikel der Ausgabe 8/2011

Journal of Nanoparticle Research 8/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.