Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

22.03.2016

Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations

verfasst von: Hong Wang, Danping Yang, Shengfeng Zhu

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimal-order error estimates in the energy norm and the \(L^2\) norm were previously proved in the literature for finite element methods of Dirichlet boundary-value problems of steady-state fractional diffusion equations under the assumption that the true solutions have desired regularity and that the solution to the dual problem has full regularity for each right-hand side. We show that the solution to the homogeneous Dirichlet boundary-value problem of a one-dimensional steady-state fractional diffusion equation of constant coefficient and source term is not necessarily in the Sobolev space \(H^1\). This fact has the following implications: (i) Up to now, there are no verifiable conditions on the coefficients and source terms of fractional diffusion equations in the literature to ensure the high regularity of the true solutions, which are in turn needed to guarantee the high-order convergence rates of their numerical approximations. (ii) Any Nitsche-lifting based proof of optimal-order \(L^2\) error estimates of finite element methods in the literature is invalid. We present numerical results to show that high-order finite element methods for a steady-state fractional diffusion equation with smooth data and source term fail to achieve high-order convergence rates. We present a preliminary development of an indirect finite element method, which reduces the solution of fractional diffusion equations to that of second-order diffusion equations postprocessed by a fractional differentiation. We prove that the corresponding high-order methods achieve high-order convergence rates even though the true solutions are not smooth, provided that the coefficient and source term of the problem have desired regularities. Numerical experiments are presented to substantiate the theoretical estimates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, San Diego (2003)MATH Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, San Diego (2003)MATH
2.
Zurück zum Zitat Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motion, and the made tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motion, and the made tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef
3.
Zurück zum Zitat Bennett, C., Sharpley, R.C.: Interpolation of Operators. Academic Press, Cambridge (1988)MATH Bennett, C., Sharpley, R.C.: Interpolation of Operators. Academic Press, Cambridge (1988)MATH
4.
Zurück zum Zitat Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef
5.
Zurück zum Zitat Carr, P., Wu, L.R.: The finite moment logstable process and option pricing. J. Finance 58, 753–778 (2003)CrossRef Carr, P., Wu, L.R.: The finite moment logstable process and option pricing. J. Finance 58, 753–778 (2003)CrossRef
6.
Zurück zum Zitat Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: a particle tracking approach. Water Resour. Res. 45, W10415 (2009)CrossRef Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: a particle tracking approach. Water Resour. Res. 45, W10415 (2009)CrossRef
7.
Zurück zum Zitat Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH
8.
Zurück zum Zitat del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)CrossRef del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)CrossRef
9.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)CrossRefMATH Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)CrossRefMATH
11.
Zurück zum Zitat Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 136, 521–537 (2013)MathSciNet Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 136, 521–537 (2013)MathSciNet
12.
Zurück zum Zitat Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. Studies in Mathematics, vol. 43. De Gruyter (2011) Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. Studies in Mathematics, vol. 43. De Gruyter (2011)
14.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
17.
Zurück zum Zitat Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)MATH Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)MATH
18.
Zurück zum Zitat Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)MathSciNetCrossRefMATH Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)MathSciNetCrossRef Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Wheatcraft, S.W., Meerschaert, M.M.: Fractional conservation of mass. Adv. Water Resour. 31, 1377–1381 (2008)CrossRef Wheatcraft, S.W., Meerschaert, M.M.: Fractional conservation of mass. Adv. Water Resour. 31, 1377–1381 (2008)CrossRef
21.
Zurück zum Zitat Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43, W05439 (2007) Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43, W05439 (2007)
Metadaten
Titel
Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations
verfasst von
Hong Wang
Danping Yang
Shengfeng Zhu
Publikationsdatum
22.03.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0196-7

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe

Premium Partner