Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Accurate fluid force measurement based on control surface integration

verfasst von: David Lentink

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, \({{{ {\rho _{\text{f}}}} \mathord{\left/ {\vphantom {{1 - {\rho _{\text{f}}}} {\left( {{\rho _{\text{b}}}\;+\;{\rho _{\text{f}}}} \right)}}} \right. \kern-0pt} {\left( {{{{\rho }}_{\text{b}}}\;+\;{\rho _{\text{f}}}} \right)}}} ,\) depends only on the fluid, \({\rho _{\text{f}}}\), and body, \({{\rho }}_{\text{b}}\), density. Whereas these straightforward solutions work even at the liquid–gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non-intrusively and accurately determine fluid force in most applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefMATH Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefMATH
Zurück zum Zitat Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool Part Ecol Genet Physiol 313:262–279 Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool Part Ecol Genet Physiol 313:262–279
Zurück zum Zitat Chin DD, Lentink D (2017). How birds direct impulse to minimize the energetic cost of foraging flight. Sci Adv. 3:e1603041CrossRef Chin DD, Lentink D (2017). How birds direct impulse to minimize the energetic cost of foraging flight. Sci Adv. 3:e1603041CrossRef
Zurück zum Zitat Deetjen ME, Biewener AA, Lentink D (2017) High-speed surface reconstruction of a flying bird using structured light. J Exp Biol 220(11):1956–1961CrossRef Deetjen ME, Biewener AA, Lentink D (2017) High-speed surface reconstruction of a flying bird using structured light. J Exp Biol 220(11):1956–1961CrossRef
Zurück zum Zitat DeVoria AC, Carr ZR, Ringuette MJ (2014) On calculating forces from the flow field with application to experimental volume data. J Fluid Mech 749:297–319CrossRef DeVoria AC, Carr ZR, Ringuette MJ (2014) On calculating forces from the flow field with application to experimental volume data. J Fluid Mech 749:297–319CrossRef
Zurück zum Zitat Dickinson MH, Lehmann F-O, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann F-O, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Gutierrez E, Quinn DB, Chin DD, Lentink D (2016) Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspir Biomim 12:16004CrossRef Gutierrez E, Quinn DB, Chin DD, Lentink D (2016) Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspir Biomim 12:16004CrossRef
Zurück zum Zitat Hightower BJ, Ingersoll R, Chin DD, Lawhon C, Haselsteiner AF, Lentink D (2017) Design and analysis of aerodynamic force platforms for free flight studies. Bioinspiration Biomim 12(6):064001CrossRef Hightower BJ, Ingersoll R, Chin DD, Lawhon C, Haselsteiner AF, Lentink D (2017) Design and analysis of aerodynamic force platforms for free flight studies. Bioinspiration Biomim 12(6):064001CrossRef
Zurück zum Zitat Hsieh ST, Lauder GV (2004) Running on water: three-dimensional force generation by basilisk lizards. Proc Natl Acad Sci USA 101:16784–16788CrossRef Hsieh ST, Lauder GV (2004) Running on water: three-dimensional force generation by basilisk lizards. Proc Natl Acad Sci USA 101:16784–16788CrossRef
Zurück zum Zitat Lentink D, Haselsteiner AF, Ingersoll R (2015) In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds. J R Soc Interface 12:20141283CrossRef Lentink D, Haselsteiner AF, Ingersoll R (2015) In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds. J R Soc Interface 12:20141283CrossRef
Zurück zum Zitat Meriam JL, Kraige LG (1993) Engineering mechanics: dynamics, vol 2, 3rd edn. Wiley, New YorkMATH Meriam JL, Kraige LG (1993) Engineering mechanics: dynamics, vol 2, 3rd edn. Wiley, New YorkMATH
Zurück zum Zitat Mohebbian A, Rival DE (2012) Assessment of the derivative-moment transformation method for unsteady-load estimation. Exp Fluids 53:319–330CrossRef Mohebbian A, Rival DE (2012) Assessment of the derivative-moment transformation method for unsteady-load estimation. Exp Fluids 53:319–330CrossRef
Zurück zum Zitat Noca F, Shiels D, Jeon D (1999) A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J Fluids Struct 13:551–578CrossRef Noca F, Shiels D, Jeon D (1999) A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J Fluids Struct 13:551–578CrossRef
Zurück zum Zitat Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef
Zurück zum Zitat Rae WH, Pope A (1984) Low-speed wind tunnel testing. Wiley, New York Rae WH, Pope A (1984) Low-speed wind tunnel testing. Wiley, New York
Zurück zum Zitat Rival DE, Van Oudheusden B (2017) Load-estimation techniques for unsteady incompressible flows. Exp Fluids 58:20CrossRef Rival DE, Van Oudheusden B (2017) Load-estimation techniques for unsteady incompressible flows. Exp Fluids 58:20CrossRef
Zurück zum Zitat Saffman PG (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH Saffman PG (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Spedding GR, Hedenström A (2009) PIV-based investigations of animal flight. Exp Fluids 46:749–763CrossRef Spedding GR, Hedenström A (2009) PIV-based investigations of animal flight. Exp Fluids 46:749–763CrossRef
Zurück zum Zitat Tronchin T, David L, Farcy A (2015) Loads and pressure evaluation of the flow around a flapping wing from instantaneous 3D velocity measurements. Exp Fluids 56:7CrossRef Tronchin T, David L, Farcy A (2015) Loads and pressure evaluation of the flow around a flapping wing from instantaneous 3D velocity measurements. Exp Fluids 56:7CrossRef
Zurück zum Zitat Unal MF, Lin J-C, Rockwell D (1997) Force prediction by PIV imaging: a momentum-based approach. J Fluids Struct 11:965–971CrossRef Unal MF, Lin J-C, Rockwell D (1997) Force prediction by PIV imaging: a momentum-based approach. J Fluids Struct 11:965–971CrossRef
Zurück zum Zitat Wolf T, Konrath R (2015) Avian wing geometry and kinematics of a free-flying barn owl in flapping flight. Exp Fluids 56:28CrossRef Wolf T, Konrath R (2015) Avian wing geometry and kinematics of a free-flying barn owl in flapping flight. Exp Fluids 56:28CrossRef
Zurück zum Zitat Wu J-Z, Pan Z-L, Lu X-Y (2005) Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys Fluids 17:98102 (1994-Present)CrossRef Wu J-Z, Pan Z-L, Lu X-Y (2005) Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys Fluids 17:98102 (1994-Present)CrossRef
Metadaten
Titel
Accurate fluid force measurement based on control surface integration
verfasst von
David Lentink
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2464-1

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.