Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

verfasst von: Till Zürner, Tobias Vogt, Christian Resagk, Sven Eckert, Jörg Schumacher

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium–indium–tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeMATH Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Asai S (2012) Electromagnetic processing of materials, fluid mechanics and its applications, vol 99. Springer, DordrechtCrossRef Asai S (2012) Electromagnetic processing of materials, fluid mechanics and its applications, vol 99. Springer, DordrechtCrossRef
Zurück zum Zitat Baker NT, Pothérat A, Davoust L, Debray F, Klein R (2017) Controlling the dimensionality of low-Rm MHD turbulence experimentally. Exp Fluids 58(7) Baker NT, Pothérat A, Davoust L, Debray F, Klein R (2017) Controlling the dimensionality of low-Rm MHD turbulence experimentally. Exp Fluids 58(7)
Zurück zum Zitat Batchelor GK (1954) Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q Appl Math 12(3):209–233MathSciNetCrossRefMATH Batchelor GK (1954) Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q Appl Math 12(3):209–233MathSciNetCrossRefMATH
Zurück zum Zitat Boden S, Eckert S, Willers B, Gerbeth G (2008) X-ray radioscopic visualization of the solutal convection during solidification of a Ga-30 Wt Pct In alloy. Metall Mater Trans A 39(3):613–623CrossRef Boden S, Eckert S, Willers B, Gerbeth G (2008) X-ray radioscopic visualization of the solutal convection during solidification of a Ga-30 Wt Pct In alloy. Metall Mater Trans A 39(3):613–623CrossRef
Zurück zum Zitat Brito D, Nataf HC, Cardin P, Aubert J, Masson JP (2001) Ultrasonic Doppler velocimetry in liquid gallium. Exp Fluids 31(6):653–663CrossRef Brito D, Nataf HC, Cardin P, Aubert J, Masson JP (2001) Ultrasonic Doppler velocimetry in liquid gallium. Exp Fluids 31(6):653–663CrossRef
Zurück zum Zitat Brown E, Ahlers G (2006) Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J Fluid Mech 568:351–386CrossRefMATH Brown E, Ahlers G (2006) Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J Fluid Mech 568:351–386CrossRefMATH
Zurück zum Zitat Çengel YA (2008) Introduction to thermodynamics and heat transfer, 2nd edn. McGraw-Hill, New York Çengel YA (2008) Introduction to thermodynamics and heat transfer, 2nd edn. McGraw-Hill, New York
Zurück zum Zitat Chillà F, Schumacher J (2012) New perspectives in turbulent Rayleigh–Bénard convection. Eur Phys J E 35(7):58CrossRef Chillà F, Schumacher J (2012) New perspectives in turbulent Rayleigh–Bénard convection. Eur Phys J E 35(7):58CrossRef
Zurück zum Zitat Davidson PA (2001) An introduction to magnetohydrodynamics, Cambridge texts in applied mathematics, vol 25, 1st edn. Cambridge University Press, Cambridge Davidson PA (2001) An introduction to magnetohydrodynamics, Cambridge texts in applied mathematics, vol 25, 1st edn. Cambridge University Press, Cambridge
Zurück zum Zitat Dubovikova N, Resagk C, Karcher C, Kolesnikov Y (2016) Contactless flow measurement in liquid metal using electromagnetic time-of-flight method. Meas Sci Technol 27(5):055,102CrossRef Dubovikova N, Resagk C, Karcher C, Kolesnikov Y (2016) Contactless flow measurement in liquid metal using electromagnetic time-of-flight method. Meas Sci Technol 27(5):055,102CrossRef
Zurück zum Zitat Eckert S, Gerbeth G (2002) Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp Fluids 32(5):542–546CrossRef Eckert S, Gerbeth G (2002) Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp Fluids 32(5):542–546CrossRef
Zurück zum Zitat Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Electromagnetism. Academic Press Inc, San Diego Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Electromagnetism. Academic Press Inc, San Diego
Zurück zum Zitat Heinicke C (2013) Spatially resolved measurements in a liquid metal flow with Lorentz force velocimetry. Exp Fluids 54(6):1–8CrossRef Heinicke C (2013) Spatially resolved measurements in a liquid metal flow with Lorentz force velocimetry. Exp Fluids 54(6):1–8CrossRef
Zurück zum Zitat Heinicke C, Tympel S, Pulugundla G, Rahneberg I, Boeck T, Thess A (2012) Interaction of a small permanent magnet with a liquid metal duct flow. J Appl Phys 112(12):124,914CrossRef Heinicke C, Tympel S, Pulugundla G, Rahneberg I, Boeck T, Thess A (2012) Interaction of a small permanent magnet with a liquid metal duct flow. J Appl Phys 112(12):124,914CrossRef
Zurück zum Zitat Hernández D, Schleichert J, Karcher C, Fröhlich T, Wondrak T, Timmel K (2016) Local Lorentz force flowmeter at a continuous caster model using a new generation multicomponent force and torque sensor. Meas Sci Technol 27(6):065,302CrossRef Hernández D, Schleichert J, Karcher C, Fröhlich T, Wondrak T, Timmel K (2016) Local Lorentz force flowmeter at a continuous caster model using a new generation multicomponent force and torque sensor. Meas Sci Technol 27(6):065,302CrossRef
Zurück zum Zitat Kelley DH, Sadoway DR (2014) Mixing in a liquid metal electrode. Phys Fluids 26(5):057,102CrossRef Kelley DH, Sadoway DR (2014) Mixing in a liquid metal electrode. Phys Fluids 26(5):057,102CrossRef
Zurück zum Zitat Ng CS, Chung D, Ooi A (2013) Turbulent natural convection scaling in a vertical channel. Int J Heat Fluid Flow 44:554–562CrossRef Ng CS, Chung D, Ooi A (2013) Turbulent natural convection scaling in a vertical channel. Int J Heat Fluid Flow 44:554–562CrossRef
Zurück zum Zitat Ng CS, Ooi A, Lohse D, Chung D (2015) Vertical natural convection: application of the unifying theory of thermal convection. J Fluid Mech 764:349–361MathSciNetCrossRef Ng CS, Ooi A, Lohse D, Chung D (2015) Vertical natural convection: application of the unifying theory of thermal convection. J Fluid Mech 764:349–361MathSciNetCrossRef
Zurück zum Zitat Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R (2014) Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J Chem Eng Data 59(3):757–763CrossRef Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R (2014) Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J Chem Eng Data 59(3):757–763CrossRef
Zurück zum Zitat Ricou R, Vives C (1982) Local velocity and mass transfer measurements in molten metals using an incorporated magnet probe. Int J Heat Mass Transf 25(10):1579–1588CrossRef Ricou R, Vives C (1982) Local velocity and mass transfer measurements in molten metals using an incorporated magnet probe. Int J Heat Mass Transf 25(10):1579–1588CrossRef
Zurück zum Zitat Scheel JD, Schumacher J (2016) Global and local statistics in turbulent convection at low Prandtl numbers. J Fluid Mech 802:147–173MathSciNetCrossRef Scheel JD, Schumacher J (2016) Global and local statistics in turbulent convection at low Prandtl numbers. J Fluid Mech 802:147–173MathSciNetCrossRef
Zurück zum Zitat Shevchenko N, Boden S, Eckert S, Borin D, Heinze M, Odenbach S (2013) Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts. Eur Phys J Spec Top 220(1):63–77CrossRef Shevchenko N, Boden S, Eckert S, Borin D, Heinze M, Odenbach S (2013) Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts. Eur Phys J Spec Top 220(1):63–77CrossRef
Zurück zum Zitat Shishkina O (2016) Momentum and heat transport scalings in laminar vertical convection. Phys Rev E 93(5):051,102(R)CrossRef Shishkina O (2016) Momentum and heat transport scalings in laminar vertical convection. Phys Rev E 93(5):051,102(R)CrossRef
Zurück zum Zitat Sokolov I, Noskov V, Pavlinov A, Kolesnikov Y (2016) Lorentz force velocimetry for high speed liquid sodium flow. Magnetohydrodynamics 52(4):481–493 Sokolov I, Noskov V, Pavlinov A, Kolesnikov Y (2016) Lorentz force velocimetry for high speed liquid sodium flow. Magnetohydrodynamics 52(4):481–493
Zurück zum Zitat Stefani F, Gerbeth G (1999) Velocity reconstruction in conducting fluids from magnetic field and electric potential measurements. Inverse Probl 15(3):771MathSciNetCrossRefMATH Stefani F, Gerbeth G (1999) Velocity reconstruction in conducting fluids from magnetic field and electric potential measurements. Inverse Probl 15(3):771MathSciNetCrossRefMATH
Zurück zum Zitat Takeda Y (1986) Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow 7(4):313–318CrossRef Takeda Y (1986) Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow 7(4):313–318CrossRef
Zurück zum Zitat Tasaka Y, Igaki K, Yanagisawa T, Vogt T, Zürner T, Eckert S (2016) Regular flow reversals in Rayleigh–Bénard convection in a horizontal magnetic field. Phys Rev E 93(4):043,109CrossRef Tasaka Y, Igaki K, Yanagisawa T, Vogt T, Zürner T, Eckert S (2016) Regular flow reversals in Rayleigh–Bénard convection in a horizontal magnetic field. Phys Rev E 93(4):043,109CrossRef
Zurück zum Zitat Thess A, Votyakov EV, Kolesnikov Y (2006) Lorentz force velocimetry. Phys Rev Lett 96(16) Thess A, Votyakov EV, Kolesnikov Y (2006) Lorentz force velocimetry. Phys Rev Lett 96(16)
Zurück zum Zitat Thess A, Votyakov EV, Knaepen B, Zikanov O (2007) Theory of the Lorentz force flowmeter. New J Phys 9(8):299CrossRef Thess A, Votyakov EV, Knaepen B, Zikanov O (2007) Theory of the Lorentz force flowmeter. New J Phys 9(8):299CrossRef
Zurück zum Zitat Vasilyan S, Fröhlich T (2014) Direct Lorentz force compensation flowmeter for electrolytes. Appl Phys Lett 105(22):223,510CrossRef Vasilyan S, Fröhlich T (2014) Direct Lorentz force compensation flowmeter for electrolytes. Appl Phys Lett 105(22):223,510CrossRef
Zurück zum Zitat Vladimirov VS (1972) Gleichungen der mathematischen Physik, Hochschulbücher für Mathematik, vol 74. VEB Deutscher Verlag der Wissenschaften, Berlin Vladimirov VS (1972) Gleichungen der mathematischen Physik, Hochschulbücher für Mathematik, vol 74. VEB Deutscher Verlag der Wissenschaften, Berlin
Zurück zum Zitat Vogt T, Grants I, Eckert S, Gerbeth G (2013) Spin-up of a magnetically driven tornado-like vortex. J Fluid Mech 736:641–662CrossRefMATH Vogt T, Grants I, Eckert S, Gerbeth G (2013) Spin-up of a magnetically driven tornado-like vortex. J Fluid Mech 736:641–662CrossRefMATH
Zurück zum Zitat Vogt T, Räbiger D, Eckert S (2014) Inertial wave dynamics in a rotating liquid metal. J Fluid Mech 753:472–498CrossRef Vogt T, Räbiger D, Eckert S (2014) Inertial wave dynamics in a rotating liquid metal. J Fluid Mech 753:472–498CrossRef
Zurück zum Zitat Wang XD, Klein R, Kolesnikov Y, Thess A (2011) Application of Lorentz force velocimetry to open channel flow. Mater Sci Forum 690:99–102CrossRef Wang XD, Klein R, Kolesnikov Y, Thess A (2011) Application of Lorentz force velocimetry to open channel flow. Mater Sci Forum 690:99–102CrossRef
Zurück zum Zitat Wegfrass A, Diethold C, Werner M, Fröhlich T, Halbedel B, Hilbrunner F, Resagk C, Thess A (2012) A universal noncontact flowmeter for liquids. Appl Phys Lett 100(19):194,103CrossRef Wegfrass A, Diethold C, Werner M, Fröhlich T, Halbedel B, Hilbrunner F, Resagk C, Thess A (2012) A universal noncontact flowmeter for liquids. Appl Phys Lett 100(19):194,103CrossRef
Zurück zum Zitat Wiederhold A, Ebert R, Weidner M, Halbedel B, Fröhlich T, Resagk C (2016) Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids–an experimental validation. Meas Sci Technol 27(12):125,306CrossRef Wiederhold A, Ebert R, Weidner M, Halbedel B, Fröhlich T, Resagk C (2016) Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids–an experimental validation. Meas Sci Technol 27(12):125,306CrossRef
Zurück zum Zitat Wondrak T, Pal J, Stefani F, Galindo V, Eckert S (2017) Visualization of the global flow structure in a modified Rayleigh–Benard setup using contactless inductive flow tomography. Flow Meas Instrum Wondrak T, Pal J, Stefani F, Galindo V, Eckert S (2017) Visualization of the global flow structure in a modified Rayleigh–Benard setup using contactless inductive flow tomography. Flow Meas Instrum
Zurück zum Zitat Yu H, Li N, Ecke RE (2007) Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer? Phys Rev E 76(2):026,303CrossRef Yu H, Li N, Ecke RE (2007) Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer? Phys Rev E 76(2):026,303CrossRef
Zurück zum Zitat Zhou Q, Xi HD, Zhou SQ, Sun C, Xia KQ (2009) Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J Fluid Mech 630:367–390CrossRefMATH Zhou Q, Xi HD, Zhou SQ, Sun C, Xia KQ (2009) Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J Fluid Mech 630:367–390CrossRefMATH
Metadaten
Titel
Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
verfasst von
Till Zürner
Tobias Vogt
Christian Resagk
Sven Eckert
Jörg Schumacher
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2457-0

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.