Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Interaction of a trailing vortex with an oscillating wing

verfasst von: C. McKenna, G. Fishman, D. Rockwell

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeMATH Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Barnes CJ, Visbal MR, Gordnier RE (2014a) Investigation of aeroelastic effects in streamwise-oriented vortex/wing interactions. AIAA paper 2014-1281, AIAA, Jan 2014 Barnes CJ, Visbal MR, Gordnier RE (2014a) Investigation of aeroelastic effects in streamwise-oriented vortex/wing interactions. AIAA paper 2014-1281, AIAA, Jan 2014
Zurück zum Zitat Barnes CJ, Visbal MR, Huang GP (2014b) Numerical simulations of streamwise-oriented vortex/flexible wing interaction. AIAA paper 2014–2313, AIAA, June 2015 Barnes CJ, Visbal MR, Huang GP (2014b) Numerical simulations of streamwise-oriented vortex/flexible wing interaction. AIAA paper 2014–2313, AIAA, June 2015
Zurück zum Zitat Barnes CJ, Visbal MR, Gordnier RE (2015a) Analysis of streamwise-oriented vortex interactions for two wings in close proximity. Phys Fluids 27:015103CrossRef Barnes CJ, Visbal MR, Gordnier RE (2015a) Analysis of streamwise-oriented vortex interactions for two wings in close proximity. Phys Fluids 27:015103CrossRef
Zurück zum Zitat Barnes CJ, Visbal MR, Huang GP (2015b) Effect of bending oscillations on a streamwise-oriented vortex interaction. AIAA Paper 2015–3303, AIAA, June 2015 Barnes CJ, Visbal MR, Huang GP (2015b) Effect of bending oscillations on a streamwise-oriented vortex interaction. AIAA Paper 2015–3303, AIAA, June 2015
Zurück zum Zitat Chang JW, Park SO (2000) Measurements in the tip vortex roll-up region of an oscillating wing. AIAA J 38(6):1092–1095CrossRef Chang JW, Park SO (2000) Measurements in the tip vortex roll-up region of an oscillating wing. AIAA J 38(6):1092–1095CrossRef
Zurück zum Zitat Garmann DJ, Visbal MR (2014a) Interactions of a streamwise-oriented vortex with a wing. AIAA paper 2014-1282, AIAA, Jan 2014 Garmann DJ, Visbal MR (2014a) Interactions of a streamwise-oriented vortex with a wing. AIAA paper 2014-1282, AIAA, Jan 2014
Zurück zum Zitat Garmann DJ, Visbal MR (2014b) Unsteady interactions of a wandering streamwise-oriented vortex with a wing. AIAA paper 2014-2105. AIAA, June 2014 Garmann DJ, Visbal MR (2014b) Unsteady interactions of a wandering streamwise-oriented vortex with a wing. AIAA paper 2014-2105. AIAA, June 2014
Zurück zum Zitat Garmann DJ, Visbal MR (2015a) Interactions of a streamwise-oriented vortex with a finite wing. J Fluid Mech 767:782–810CrossRef Garmann DJ, Visbal MR (2015a) Interactions of a streamwise-oriented vortex with a finite wing. J Fluid Mech 767:782–810CrossRef
Zurück zum Zitat Garmann DJ, Visbal MR (2015b) Streamwise-oriented vortex interactions with a NACA0012 wing. AIAA Paper 2015-1066, AIAA, Jan 2015 Garmann DJ, Visbal MR (2015b) Streamwise-oriented vortex interactions with a NACA0012 wing. AIAA Paper 2015-1066, AIAA, Jan 2015
Zurück zum Zitat Garmann DJ, Visbal MR (2015c) Transient encounters of a NACA0012 wing with a streamwise-oriented vortex. AIAA paper 2015-3073, AIAA, June 2015 Garmann DJ, Visbal MR (2015c) Transient encounters of a NACA0012 wing with a streamwise-oriented vortex. AIAA paper 2015-3073, AIAA, June 2015
Zurück zum Zitat Garmann DJ, Visbal MR (2016a) Unsteady evolution of the tip vortex on a stationary and oscillating NACA0012 wing. AIAA paper 2016-0328, AIAA, Jan 2016 Garmann DJ, Visbal MR (2016a) Unsteady evolution of the tip vortex on a stationary and oscillating NACA0012 wing. AIAA paper 2016-0328, AIAA, Jan 2016
Zurück zum Zitat Garmann DJ, Visbal MR (2016b) Further investigations of the tip vortex on an oscillating NACA0012 wing. AIAA paper 2016-4343, AIAA, June 2016 Garmann DJ, Visbal MR (2016b) Further investigations of the tip vortex on an oscillating NACA0012 wing. AIAA paper 2016-4343, AIAA, June 2016
Zurück zum Zitat Gordnier RE, Visbal MR (1999) Numerical simulation of the impingement of a streamwise vortex on a plate. Int J Comput Fluid Dyn 12(1):49–66CrossRefMATH Gordnier RE, Visbal MR (1999) Numerical simulation of the impingement of a streamwise vortex on a plate. Int J Comput Fluid Dyn 12(1):49–66CrossRefMATH
Zurück zum Zitat Gursul I, Xie W (2001) Interaction of vortex breakdown with an oscillating fin. AIAA J 39(3):438–446CrossRef Gursul I, Xie W (2001) Interaction of vortex breakdown with an oscillating fin. AIAA J 39(3):438–446CrossRef
Zurück zum Zitat Hummel D (1983) Aerodynamic aspects of formation flight in birds. J Theor Biol 104(3):321–347CrossRef Hummel D (1983) Aerodynamic aspects of formation flight in birds. J Theor Biol 104(3):321–347CrossRef
Zurück zum Zitat Hummel D (1995) Formation flight as an energy-saving mechanism. Isr J Zool 41(3):261–278 Hummel D (1995) Formation flight as an energy-saving mechanism. Isr J Zool 41(3):261–278
Zurück zum Zitat Inasawa A, Mori F, Asai M (2012) Detailed observations of interactions of wingtip vortices in close-formation flight. J Aircraft 49(1):206–213CrossRef Inasawa A, Mori F, Asai M (2012) Detailed observations of interactions of wingtip vortices in close-formation flight. J Aircraft 49(1):206–213CrossRef
Zurück zum Zitat Kao DL, Ahmad JU, Holst TL, Allan BG (2013) Visualization and analysis of vortex features in helicopter rotor wakes. AIAA paper 2013-1162. AIAA, Jan 2013 Kao DL, Ahmad JU, Holst TL, Allan BG (2013) Visualization and analysis of vortex features in helicopter rotor wakes. AIAA paper 2013-1162. AIAA, Jan 2013
Zurück zum Zitat Kless J, Aftosmis MJ, Ning SA, Nemec M (2013) Inviscid analysis of extended-formation flight. AIAA J 51(7):1703–1715CrossRef Kless J, Aftosmis MJ, Ning SA, Nemec M (2013) Inviscid analysis of extended-formation flight. AIAA J 51(7):1703–1715CrossRef
Zurück zum Zitat Lopez JM, Perry AD (1992) Axisymmetric vortex breakdown. Part 3 onset of periodic flow and chaotic advection. J Fluid Mech 234:449–471MathSciNetCrossRefMATH Lopez JM, Perry AD (1992) Axisymmetric vortex breakdown. Part 3 onset of periodic flow and chaotic advection. J Fluid Mech 234:449–471MathSciNetCrossRefMATH
Zurück zum Zitat McKenna CK, Rockwell D (2016) Topology of vortex–wing interaction. Exp Fluids 57:161CrossRef McKenna CK, Rockwell D (2016) Topology of vortex–wing interaction. Exp Fluids 57:161CrossRef
Zurück zum Zitat McKenna CK, Bross M, Rockwell D (2017) Structure of a streamwise-oriented vortex incident upon a wing. J Fluid Mech 816:306–330CrossRef McKenna CK, Bross M, Rockwell D (2017) Structure of a streamwise-oriented vortex incident upon a wing. J Fluid Mech 816:306–330CrossRef
Zurück zum Zitat Patel MH, Hancock GJ (1974) Some experimental results of the effect of a streamwise vortex on a two-dimensional wing. Aeronaut J 78:151–155 Patel MH, Hancock GJ (1974) Some experimental results of the effect of a streamwise vortex on a two-dimensional wing. Aeronaut J 78:151–155
Zurück zum Zitat Perry AE, Chong MS (1987) A descripton of eddying motions and flow patterns using critical point concepts. Annu Rev Fluid Mech 19:125–155CrossRef Perry AE, Chong MS (1987) A descripton of eddying motions and flow patterns using critical point concepts. Annu Rev Fluid Mech 19:125–155CrossRef
Zurück zum Zitat Perry AE, Tan DKM (1984) Simple three-dimensional vortex motions in coflowing jets and wakes. J Fluid Mech 141:197–231CrossRef Perry AE, Tan DKM (1984) Simple three-dimensional vortex motions in coflowing jets and wakes. J Fluid Mech 141:197–231CrossRef
Zurück zum Zitat Ramaprian BR, Zheng Y (1998) Near field of the tip vortex behind an oscillating rectangular wing. AIAA J 36(7):1263–1269CrossRef Ramaprian BR, Zheng Y (1998) Near field of the tip vortex behind an oscillating rectangular wing. AIAA J 36(7):1263–1269CrossRef
Zurück zum Zitat Visbal MR (2017) Unsteady flow structure and loading of a pitching low-aspect-ratio wing. Phys Rev Fluids 2:024703CrossRef Visbal MR (2017) Unsteady flow structure and loading of a pitching low-aspect-ratio wing. Phys Rev Fluids 2:024703CrossRef
Zurück zum Zitat Wittmer KS, Devenport WJ (1999) Effects of perpendicular blade-vortex interaction, part1: turbulence structure and development. AIAA J 37(7):805–812CrossRef Wittmer KS, Devenport WJ (1999) Effects of perpendicular blade-vortex interaction, part1: turbulence structure and development. AIAA J 37(7):805–812CrossRef
Zurück zum Zitat Wolfe S, Lin JC, Rockwell D (1995) Buffeting at the leading-edge of a flat plate due to a streamwise vortex: flow structure and surface pressure loading. J Fluids Struct 9:359–370CrossRef Wolfe S, Lin JC, Rockwell D (1995) Buffeting at the leading-edge of a flat plate due to a streamwise vortex: flow structure and surface pressure loading. J Fluids Struct 9:359–370CrossRef
Metadaten
Titel
Interaction of a trailing vortex with an oscillating wing
verfasst von
C. McKenna
G. Fishman
D. Rockwell
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2474-z

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.