Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Development of \({\rm N}_2{\rm O}\)-MTV for low-speed flow and in-situ deployment to an integral effect test facility

verfasst von: Matthieu A. André, Ross A. Burns, Paul M. Danehy, Seth R. Cadell, Brian G. Woods, Philippe M. Bardet

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide \(({\rm N}_2{\rm O})\) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of \({\rm N}_2{\rm O}\)-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short \((<1\, {\rm s})\) and long (\(>30\) min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat André MA, Bardet PM, Burns RA, Danehy PM (2017) Characterization of hydroxyl tagging velocimetry for low-speed flows. Meas Sci Technol 28(8):085202CrossRef André MA, Bardet PM, Burns RA, Danehy PM (2017) Characterization of hydroxyl tagging velocimetry for low-speed flows. Meas Sci Technol 28(8):085202CrossRef
Zurück zum Zitat Boedeker LR (1989) Velocity measurement by H2O photolysis and laser-induced fluorescence of OH. Opt Lett 14(10):473–475CrossRef Boedeker LR (1989) Velocity measurement by H2O photolysis and laser-induced fluorescence of OH. Opt Lett 14(10):473–475CrossRef
Zurück zum Zitat Cussler E (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, CambridgeCrossRef Cussler E (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Dam N, Klein-Douwel R, Sijtsema NM, Ter Meulen J (2001) Nitric oxide flow tagging in unseeded air. Opt Lett 26(1):36–38CrossRef Dam N, Klein-Douwel R, Sijtsema NM, Ter Meulen J (2001) Nitric oxide flow tagging in unseeded air. Opt Lett 26(1):36–38CrossRef
Zurück zum Zitat Danehy P, O’Byrne S, Houwing A, Fox J, Smith D (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41(2):263–271CrossRef Danehy P, O’Byrne S, Houwing A, Fox J, Smith D (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41(2):263–271CrossRef
Zurück zum Zitat ElBaz A, Pitz R (2012) N2O molecular tagging velocimetry. Appl Phys B 106(4):961–969CrossRef ElBaz A, Pitz R (2012) N2O molecular tagging velocimetry. Appl Phys B 106(4):961–969CrossRef
Zurück zum Zitat Falco R, Chu C (1988) Measurement of two-dimensional fluid dynamic quantities using a photochromic grid tracing technique. Int Conf Photomech Speckle Metrol 814:706–710 Falco R, Chu C (1988) Measurement of two-dimensional fluid dynamic quantities using a photochromic grid tracing technique. Int Conf Photomech Speckle Metrol 814:706–710
Zurück zum Zitat Fuller EN, Schettler PD, Giddings JC (1966) New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem 58(5):18–27CrossRef Fuller EN, Schettler PD, Giddings JC (1966) New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem 58(5):18–27CrossRef
Zurück zum Zitat Gendrich C, Koochesfahani M (1996) A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV). Exp Fluids 22(1):67–77CrossRef Gendrich C, Koochesfahani M (1996) A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV). Exp Fluids 22(1):67–77CrossRef
Zurück zum Zitat Gutowska I (2015) Study on depressurized loss of coolant accident and its mitigation method framework at very high temperature gas cooled reactor. Ph.D. thesis, Oregon State University Gutowska I (2015) Study on depressurized loss of coolant accident and its mitigation method framework at very high temperature gas cooled reactor. Ph.D. thesis, Oregon State University
Zurück zum Zitat Hall CA, Ramsey MC, Knaus DA, Pitz RW (2017) Molecular tagging velocimetry in nitrogen with trace water vapor. Meas Sci Technol 28(8):085201CrossRef Hall CA, Ramsey MC, Knaus DA, Pitz RW (2017) Molecular tagging velocimetry in nitrogen with trace water vapor. Meas Sci Technol 28(8):085201CrossRef
Zurück zum Zitat Hill R, Klewicki J (1996) Data reduction methods for flow tagging velocity measurements. Exp Fluids 20(3):142–152CrossRef Hill R, Klewicki J (1996) Data reduction methods for flow tagging velocity measurements. Exp Fluids 20(3):142–152CrossRef
Zurück zum Zitat Hudson R (1974) Absorption cross sections of stratospheric molecules. Can J Chem 52(8):1465–1478CrossRef Hudson R (1974) Absorption cross sections of stratospheric molecules. Can J Chem 52(8):1465–1478CrossRef
Zurück zum Zitat Jiang N, Nishihara M, Lempert WR (2010) Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate. Appl Phys Lett 97(22):221103CrossRef Jiang N, Nishihara M, Lempert WR (2010) Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate. Appl Phys Lett 97(22):221103CrossRef
Zurück zum Zitat Koochesfahani MM, Nocera DG (2007) Molecular tagging velocimetry. In: Handbook of experimental fluid dynamics, pp 362–382 Koochesfahani MM, Nocera DG (2007) Molecular tagging velocimetry. In: Handbook of experimental fluid dynamics, pp 362–382
Zurück zum Zitat Krüger S, Grünefeld G (1999) Stereoscopic flow-tagging velocimetry. Appl Phys B 69(5–6):509–512CrossRef Krüger S, Grünefeld G (1999) Stereoscopic flow-tagging velocimetry. Appl Phys B 69(5–6):509–512CrossRef
Zurück zum Zitat Lempert W, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40(6):1065–1070CrossRef Lempert W, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40(6):1065–1070CrossRef
Zurück zum Zitat Luque J, Crosley D (1999) LifBase: database and spectral simulation program (version 1.5). SRI international report MP 99(009) Luque J, Crosley D (1999) LifBase: database and spectral simulation program (version 1.5). SRI international report MP 99(009)
Zurück zum Zitat Michael JB, Edwards MR, Dogariu A, Miles RB (2011) Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air. Appl Opt 50(26):5158–5162CrossRef Michael JB, Edwards MR, Dogariu A, Miles RB (2011) Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air. Appl Opt 50(26):5158–5162CrossRef
Zurück zum Zitat Miles R, Connors J, Markovitz E, Howard P, Roth G (1989) Instantaneous profiles and turbulence statistics of supersonic free shear layers by raman excitation plus laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen. Exp Fluids 8(1):17–24CrossRef Miles R, Connors J, Markovitz E, Howard P, Roth G (1989) Instantaneous profiles and turbulence statistics of supersonic free shear layers by raman excitation plus laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen. Exp Fluids 8(1):17–24CrossRef
Zurück zum Zitat Miles R, Lempert W, Zhang B (1991) Turbulent structure measurements by RELIEF flow tagging. Fluid Dyn Res 8(1–4):9CrossRef Miles R, Lempert W, Zhang B (1991) Turbulent structure measurements by RELIEF flow tagging. Fluid Dyn Res 8(1–4):9CrossRef
Zurück zum Zitat Oh CH, Kim ES (2011) Air-ingress analysis: part 1. Theoretical approach. Nucl Eng Des 241(1):203–212CrossRef Oh CH, Kim ES (2011) Air-ingress analysis: part 1. Theoretical approach. Nucl Eng Des 241(1):203–212CrossRef
Zurück zum Zitat Oh CH, Kang HS, Kim ES (2011) Air-ingress analysis: part 2. Computational fluid dynamic models. Nucl Eng Des 241(1):213–225CrossRef Oh CH, Kang HS, Kim ES (2011) Air-ingress analysis: part 2. Computational fluid dynamic models. Nucl Eng Des 241(1):213–225CrossRef
Zurück zum Zitat Orlemann C, Schulz C, Wolfrum J (1999) NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures. Chem Phys Lett 307(1):15–20CrossRef Orlemann C, Schulz C, Wolfrum J (1999) NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures. Chem Phys Lett 307(1):15–20CrossRef
Zurück zum Zitat Parziale N, Smith M, Marineau E (2015) Krypton tagging velocimetry of an underexpanded jet. Appl Opt 54(16):5094–5101CrossRef Parziale N, Smith M, Marineau E (2015) Krypton tagging velocimetry of an underexpanded jet. Appl Opt 54(16):5094–5101CrossRef
Zurück zum Zitat Paul P, Gray J, Durant J, Thoman J (1993) A model for temperature-dependent collisional quenching of NO A\(^2{\varSigma }^+\). App Phys B Lasers Opt 57(4):249–259CrossRef Paul P, Gray J, Durant J, Thoman J (1993) A model for temperature-dependent collisional quenching of NO A\(^2{\varSigma }^+\). App Phys B Lasers Opt 57(4):249–259CrossRef
Zurück zum Zitat Pitz R, Wehrmeyer J, Ribarov L, Oguss D, Batliwala F, DeBarber P, Deusch S, Dimotakis P (2000) Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas Sci Technol 11(9):1259CrossRef Pitz R, Wehrmeyer J, Ribarov L, Oguss D, Batliwala F, DeBarber P, Deusch S, Dimotakis P (2000) Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas Sci Technol 11(9):1259CrossRef
Zurück zum Zitat Pitz RW, DeBarber PA, Brown MS, Brown TM, Nandula SP, Segall J, Skaggs PA (1996) Unseeded velocity measurement by ozone tagging velocimetry. Opt Lett 21(10):755–757CrossRef Pitz RW, DeBarber PA, Brown MS, Brown TM, Nandula SP, Segall J, Skaggs PA (1996) Unseeded velocity measurement by ozone tagging velocimetry. Opt Lett 21(10):755–757CrossRef
Zurück zum Zitat Ramsey MC, Pitz RW (2011) Template matching for improved accuracy in molecular tagging velocimetry. Exp Fluids 51(3):811–819CrossRef Ramsey MC, Pitz RW (2011) Template matching for improved accuracy in molecular tagging velocimetry. Exp Fluids 51(3):811–819CrossRef
Zurück zum Zitat Reyes J, Groome J, Woods B, Jackson B, Marshall T (2010) Scaling analysis for the high temperature gas reactor test section (GRTS). Nucl Eng Des 240(2):397–404CrossRef Reyes J, Groome J, Woods B, Jackson B, Marshall T (2010) Scaling analysis for the high temperature gas reactor test section (GRTS). Nucl Eng Des 240(2):397–404CrossRef
Zurück zum Zitat Salby ML (2012) Physics of the atmosphere and climate. Cambridge University Press, Cambridge, UK Salby ML (2012) Physics of the atmosphere and climate. Cambridge University Press, Cambridge, UK
Zurück zum Zitat Sánchez-González R, Srinivasan R, Bowersox RD, North SW (2011) Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique. Opt Lett 36(2):196–198CrossRef Sánchez-González R, Srinivasan R, Bowersox RD, North SW (2011) Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique. Opt Lett 36(2):196–198CrossRef
Zurück zum Zitat Schultz RR, Bayless PD, Johnson RW, Taitano WT, Wolf JR, McCreery GE (2010) Studies related to the Oregon State University high temperature test facility: scaling, the validation matrix, and similarities to the modular high temperature gas-cooled reactor. Technical report, Idaho National Laboratory (INL) Schultz RR, Bayless PD, Johnson RW, Taitano WT, Wolf JR, McCreery GE (2010) Studies related to the Oregon State University high temperature test facility: scaling, the validation matrix, and similarities to the modular high temperature gas-cooled reactor. Technical report, Idaho National Laboratory (INL)
Zurück zum Zitat Selwyn G, Podolske J, Johnston HS (1977) Nitrous oxide ultraviolet absorption spectrum at stratospheric temperatures. Geophys Res Lett 4(10):427–430CrossRef Selwyn G, Podolske J, Johnston HS (1977) Nitrous oxide ultraviolet absorption spectrum at stratospheric temperatures. Geophys Res Lett 4(10):427–430CrossRef
Zurück zum Zitat Stier B, Koochesfahani M (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26(4):297–304CrossRef Stier B, Koochesfahani M (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26(4):297–304CrossRef
Zurück zum Zitat Utberg JE Jr (2013) Nitrogen concentration sensitivity study of the lock exchange phenomenon in the high temperature test facility. Master’s thesis, Oregon State University Utberg JE Jr (2013) Nitrogen concentration sensitivity study of the lock exchange phenomenon in the high temperature test facility. Master’s thesis, Oregon State University
Zurück zum Zitat Weissman S (1964) Estimation of diffusion coefficients from viscosity measurements: polar and polyatomic gases. J Chem Phys 40(11):3397–3406CrossRef Weissman S (1964) Estimation of diffusion coefficients from viscosity measurements: polar and polyatomic gases. J Chem Phys 40(11):3397–3406CrossRef
Metadaten
Titel
Development of -MTV for low-speed flow and in-situ deployment to an integral effect test facility
verfasst von
Matthieu A. André
Ross A. Burns
Paul M. Danehy
Seth R. Cadell
Brian G. Woods
Philippe M. Bardet
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2470-3

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.