Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence

verfasst von: Wenkang Wang, Chong Pan, Jinjun Wang

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The identification and separation of multi-scale coherent structures is a critical task for the study of scale interaction in wall-bounded turbulence. Here, we propose a quasi-bivariate variational mode decomposition (QB-VMD) method to extract structures with various scales from instantaneous two-dimensional (2D) velocity field which has only one primary dimension. This method is developed from the one-dimensional VMD algorithm proposed by Dragomiretskiy and Zosso (IEEE Trans Signal Process 62:531–544, 2014) to cope with a quasi-2D scenario. It poses the feature of length-scale bandwidth constraint along the decomposed dimension, together with the central frequency re-balancing along the non-decomposed dimension. The feasibility of this method is tested on both a synthetic flow field and a turbulent boundary layer at moderate Reynolds number (\(Re_{\tau }\) = 3458) measured by 2D particle image velocimetry (PIV). Some other popular scale separation tools, including pseudo-bi-dimensional empirical mode decomposition (PB-EMD), bi-dimensional EMD (B-EMD) and proper orthogonal decomposition (POD), are also tested for comparison. Among all these methods, QB-VMD shows advantages in both scale characterization and energy recovery. More importantly, the mode mixing problem, which degrades the performance of EMD-based methods, is avoided or minimized in QB-VMD. Finally, QB-VMD analysis of the wall-parallel plane in the log layer (at \(y/\delta\) = 0.12) of the studied turbulent boundary layer shows the coexistence of large- or very large-scale motions (LSMs or VLSMs) and inner-scaled structures, which can be fully decomposed in both physical and spectral domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agostini L, Leschziner MA (2014) On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phy Fluids 26(7):075107CrossRef Agostini L, Leschziner MA (2014) On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phy Fluids 26(7):075107CrossRef
Zurück zum Zitat Al-Baddai S, Al-Subari K, Tom AM, Sol-Casals J, Lang EW (2016) A greens function-based bi-dimensional empirical mode decomposition. Inf Sci 348:305–321CrossRef Al-Baddai S, Al-Subari K, Tom AM, Sol-Casals J, Lang EW (2016) A greens function-based bi-dimensional empirical mode decomposition. Inf Sci 348:305–321CrossRef
Zurück zum Zitat Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575MathSciNetCrossRef Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575MathSciNetCrossRef
Zurück zum Zitat Bernardini M, Pirozzoli S (2011) Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys Fluids 23(6):061701CrossRef Bernardini M, Pirozzoli S (2011) Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys Fluids 23(6):061701CrossRef
Zurück zum Zitat Blackwelder RF, Kaplan RE (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(01):89–112CrossRef Blackwelder RF, Kaplan RE (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(01):89–112CrossRef
Zurück zum Zitat Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate piv computation using highly parallel iterative correlation maximization. Exp Fluids 50(4):1169–1182CrossRef Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate piv computation using highly parallel iterative correlation maximization. Exp Fluids 50(4):1169–1182CrossRef
Zurück zum Zitat Chen J, Hussain F, Pei J, She ZS (2014) Velocity vorticity correlation structure in turbulent channel flow. J Fluid Mech 742:291–307CrossRef Chen J, Hussain F, Pei J, She ZS (2014) Velocity vorticity correlation structure in turbulent channel flow. J Fluid Mech 742:291–307CrossRef
Zurück zum Zitat Chernyshenko SI, Marusic I, Mathis R (2012) Quasi-steady description of modulation effects in wall turbulence. ArXiv e-prints arXiv:1203.3714 Chernyshenko SI, Marusic I, Mathis R (2012) Quasi-steady description of modulation effects in wall turbulence. ArXiv e-prints arXiv:​1203.​3714
Zurück zum Zitat Damerval C, Meignen S, Perrier V (2005) A fast algorithm for bidimensional emd. IEEE Signal Proc Lett 12(10):701–704CrossRef Damerval C, Meignen S, Perrier V (2005) A fast algorithm for bidimensional emd. IEEE Signal Proc Lett 12(10):701–704CrossRef
Zurück zum Zitat Del Álamo JC, Jiménez J, Zandonade P, Moser RD (2006) Self-similar vortex clusters in the turbulent logarithmic region. J Fluid Mech 561:329–358CrossRefMATH Del Álamo JC, Jiménez J, Zandonade P, Moser RD (2006) Self-similar vortex clusters in the turbulent logarithmic region. J Fluid Mech 561:329–358CrossRefMATH
Zurück zum Zitat Feng JJ, Wang JJ, Pan C (2011) Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phy Fluids 23(1):014106CrossRef Feng JJ, Wang JJ, Pan C (2011) Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phy Fluids 23(1):014106CrossRef
Zurück zum Zitat Guo H, Lian QX, Li Y, Wang HW (2004) A visual study on complex flow structures and flow breakdown in a boundary layer transition. Exp Fluids 37(3):311–322CrossRef Guo H, Lian QX, Li Y, Wang HW (2004) A visual study on complex flow structures and flow breakdown in a boundary layer transition. Exp Fluids 37(3):311–322CrossRef
Zurück zum Zitat Guo H, Borodulin VI, Kachanov YS, Pan C, Wang JJ, Lian QX, Wang SF (2010) Nature of sweep and ejection events in transitional and turbulent boundary layers. J Turbul 11:N34CrossRef Guo H, Borodulin VI, Kachanov YS, Pan C, Wang JJ, Lian QX, Wang SF (2010) Nature of sweep and ejection events in transitional and turbulent boundary layers. J Turbul 11:N34CrossRef
Zurück zum Zitat Hamilton JM, Kim J, Waleffe F (1995) Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech 287:317–348CrossRefMATH Hamilton JM, Kim J, Waleffe F (1995) Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech 287:317–348CrossRefMATH
Zurück zum Zitat Hellström LHO, Smits AJ (2014) The energetic motions in turbulent pipe flow. Phys Fluids 26(12):125102CrossRef Hellström LHO, Smits AJ (2014) The energetic motions in turbulent pipe flow. Phys Fluids 26(12):125102CrossRef
Zurück zum Zitat Hellström LHO, Sinha A, Smits AJ (2011) Visualizing the very-large-scale motions in turbulent pipe flow. Phys Fluids 23(1):011703CrossRef Hellström LHO, Sinha A, Smits AJ (2011) Visualizing the very-large-scale motions in turbulent pipe flow. Phys Fluids 23(1):011703CrossRef
Zurück zum Zitat Hellström LHO, Ganapathisubramani B, Smits AJ (2015) The evolution of large-scale motions in turbulent pipe flow. J Fluid Mech 779:701–715MathSciNetCrossRefMATH Hellström LHO, Ganapathisubramani B, Smits AJ (2015) The evolution of large-scale motions in turbulent pipe flow. J Fluid Mech 779:701–715MathSciNetCrossRefMATH
Zurück zum Zitat Huang NE (2001) Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals. US Patent 6311130 Huang NE (2001) Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals. US Patent 6311130
Zurück zum Zitat Huang NE, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Poc Math Phys Eng Sci 454(1971):903–995MathSciNetCrossRefMATH Huang NE, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Poc Math Phys Eng Sci 454(1971):903–995MathSciNetCrossRefMATH
Zurück zum Zitat Huang Y, Schmitt FG (2014) Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition. J Mar Syst 130:90–100CrossRef Huang Y, Schmitt FG (2014) Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition. J Mar Syst 130:90–100CrossRef
Zurück zum Zitat Huang Y, Biferale L, Calzavarin E, Sun C, Toschi F (2013) Lagrangian single-particle turbulent statistics through the hilbert-huang transform. Phys Rev E 87(4):041003 (Statistical, nonlinear, and soft matter physics)CrossRef Huang Y, Biferale L, Calzavarin E, Sun C, Toschi F (2013) Lagrangian single-particle turbulent statistics through the hilbert-huang transform. Phys Rev E 87(4):041003 (Statistical, nonlinear, and soft matter physics)CrossRef
Zurück zum Zitat Hunag YX, Schmitt FG, Lu ZM, Liu YL (2008) An amplitude-frequency study of turbulent scaling intermittency using empirical mode decomposition and hilbert spectral analysis. EPL (Europhysics Letters) 84(4):40010CrossRef Hunag YX, Schmitt FG, Lu ZM, Liu YL (2008) An amplitude-frequency study of turbulent scaling intermittency using empirical mode decomposition and hilbert spectral analysis. EPL (Europhysics Letters) 84(4):40010CrossRef
Zurück zum Zitat Hutchins N, Marusic I (2007a) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28CrossRefMATH Hutchins N, Marusic I (2007a) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28CrossRefMATH
Zurück zum Zitat Hutchins N, Marusic I (2007b) Large-scale influences in near-wall turbulence. Philos Trans Math Phys Eng Sci 365(1852):647–664CrossRefMATH Hutchins N, Marusic I (2007b) Large-scale influences in near-wall turbulence. Philos Trans Math Phys Eng Sci 365(1852):647–664CrossRefMATH
Zurück zum Zitat Hwang Y (2013) Near-wall turbulent fluctuations in the absence of wide outer motions. J Fluid Mech 723:264–288CrossRefMATH Hwang Y (2013) Near-wall turbulent fluctuations in the absence of wide outer motions. J Fluid Mech 723:264–288CrossRefMATH
Zurück zum Zitat Hwang Y, Bengana Y (2016) Self-sustaining process of minimal attached eddies in turbulent channel flow. J Fluid Mech 795:708–738MathSciNetCrossRefMATH Hwang Y, Bengana Y (2016) Self-sustaining process of minimal attached eddies in turbulent channel flow. J Fluid Mech 795:708–738MathSciNetCrossRefMATH
Zurück zum Zitat Kline S, Reynolds W, Schraub F, Runstadler P (1967) The structure of turbulent boundary layers. J Fluid Mech 30(04):741–773CrossRef Kline S, Reynolds W, Schraub F, Runstadler P (1967) The structure of turbulent boundary layers. J Fluid Mech 30(04):741–773CrossRef
Zurück zum Zitat Kovasznay LSG, Kibens V, Blackwelder RF (1970) Large-scale motion in the intermittent region of a turbulent boundary layer. J Fluid Mech 41(2):283–325CrossRef Kovasznay LSG, Kibens V, Blackwelder RF (1970) Large-scale motion in the intermittent region of a turbulent boundary layer. J Fluid Mech 41(2):283–325CrossRef
Zurück zum Zitat Lee J, Lee JH, Choi JI, Sung HJ (2014) Spatial organization of large-and very-large-scale motions in a turbulent channel flow. J Fluid Mech 749:818–840CrossRef Lee J, Lee JH, Choi JI, Sung HJ (2014) Spatial organization of large-and very-large-scale motions in a turbulent channel flow. J Fluid Mech 749:818–840CrossRef
Zurück zum Zitat Lee JH, Sung HJ (2011) Very-large-scale motions in a turbulent boundary layer. J Fluid Mech 673:80–120CrossRefMATH Lee JH, Sung HJ (2011) Very-large-scale motions in a turbulent boundary layer. J Fluid Mech 673:80–120CrossRefMATH
Zurück zum Zitat Lehnasch G, Jouanguy J, Laval JP, Delville J (2011) POD Based Reduced-Order Model for Prescribing Turbulent Near Wall Unsteady Boundary Condition. Springer, NetherlandsCrossRef Lehnasch G, Jouanguy J, Laval JP, Delville J (2011) POD Based Reduced-Order Model for Prescribing Turbulent Near Wall Unsteady Boundary Condition. Springer, NetherlandsCrossRef
Zurück zum Zitat Linderhed A (2009) Image empirical mode decomposition: a new tool for image processing. Adv Adapt Data Anal 01(02):265–294MathSciNetCrossRef Linderhed A (2009) Image empirical mode decomposition: a new tool for image processing. Adv Adapt Data Anal 01(02):265–294MathSciNetCrossRef
Zurück zum Zitat Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys Fluids 15(8):2461–2464CrossRefMATH Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys Fluids 15(8):2461–2464CrossRefMATH
Zurück zum Zitat Mathis R, Hutchins N, Marusic I (2009a) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337CrossRefMATH Mathis R, Hutchins N, Marusic I (2009a) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337CrossRefMATH
Zurück zum Zitat Mathis R, Hutchins N, Marusic I (2011) A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J Fluid Mech 681:537–566CrossRefMATH Mathis R, Hutchins N, Marusic I (2011) A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J Fluid Mech 681:537–566CrossRefMATH
Zurück zum Zitat Mazellier N, Foucher F (2011) Separation between coherent and turbulent fluctuations: what can we learn from the empirical mode decomposition? Exp Fluids 51(2):527–541CrossRef Mazellier N, Foucher F (2011) Separation between coherent and turbulent fluctuations: what can we learn from the empirical mode decomposition? Exp Fluids 51(2):527–541CrossRef
Zurück zum Zitat Musker AJ (1979) Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J 17(6):655–657CrossRefMATH Musker AJ (1979) Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J 17(6):655–657CrossRefMATH
Zurück zum Zitat Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel P (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026CrossRefMATH Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel P (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026CrossRefMATH
Zurück zum Zitat Pan C, Wang HP, Wang JJ (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24(5):055305CrossRef Pan C, Wang HP, Wang JJ (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24(5):055305CrossRef
Zurück zum Zitat Pan C, Xue D, Xu Y, Wang J, Wei R (2015) Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of piv application. Sci China Phys Mech Astron 58(10):1–16CrossRef Pan C, Xue D, Xu Y, Wang J, Wei R (2015) Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of piv application. Sci China Phys Mech Astron 58(10):1–16CrossRef
Zurück zum Zitat Perry AE, Maruic I (1995) A wall-wake model for the turbulence structure of boundary layers. part 1. extension of the attached eddy hypothesis. J Fluid Mech 298:361–388CrossRef Perry AE, Maruic I (1995) A wall-wake model for the turbulence structure of boundary layers. part 1. extension of the attached eddy hypothesis. J Fluid Mech 298:361–388CrossRef
Zurück zum Zitat Schlatter P, Örlü R (2010) Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys Fluids 22(5):051704CrossRefMATH Schlatter P, Örlü R (2010) Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys Fluids 22(5):051704CrossRefMATH
Zurück zum Zitat Smith C, Metzler S (1983) The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J Fluid Mech 129:27–54CrossRef Smith C, Metzler S (1983) The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J Fluid Mech 129:27–54CrossRef
Zurück zum Zitat Smits AJ, Mckeon BJ, Marusic I (2011) High–Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375CrossRefMATH Smits AJ, Mckeon BJ, Marusic I (2011) High–Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375CrossRefMATH
Zurück zum Zitat Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74CrossRefMATH Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74CrossRefMATH
Zurück zum Zitat Tomkins CD, Adrian RJ (2005) Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer. J Fluid Mech 545:141–162CrossRefMATH Tomkins CD, Adrian RJ (2005) Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer. J Fluid Mech 545:141–162CrossRefMATH
Zurück zum Zitat Vallikivi M, Hultmark M, Smits AJ (2015) Turbulent boundary layer statistics at very high reynolds number. J Fluid Mech 779:371–389MathSciNetCrossRefMATH Vallikivi M, Hultmark M, Smits AJ (2015) Turbulent boundary layer statistics at very high reynolds number. J Fluid Mech 779:371–389MathSciNetCrossRefMATH
Zurück zum Zitat Waleffe F (1997) On a self-sustaining process in shear flows. Phys Fluids (1994-Present) 9(4):883–900CrossRef Waleffe F (1997) On a self-sustaining process in shear flows. Phys Fluids (1994-Present) 9(4):883–900CrossRef
Zurück zum Zitat Wu Y, Christensen KT (2010) Spatial structure of a turbulent boundary layer with irregular surface roughness. J Fluid Mech 655:380–418CrossRefMATH Wu Y, Christensen KT (2010) Spatial structure of a turbulent boundary layer with irregular surface roughness. J Fluid Mech 655:380–418CrossRefMATH
Zurück zum Zitat Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1(3):339–372MathSciNetCrossRef Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1(3):339–372MathSciNetCrossRef
Zurück zum Zitat Zhang C, Chernyshenko SI (2016) Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys Rev Fluids 1(014):401 Zhang C, Chernyshenko SI (2016) Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys Rev Fluids 1(014):401
Metadaten
Titel
Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence
verfasst von
Wenkang Wang
Chong Pan
Jinjun Wang
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2450-7

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.