Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 17/2018

16.07.2018

Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method

verfasst von: Vahid Khorramshahi, Javad Karamdel, Ramin Yousefi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acetic acid vapor thin film gas sensor was developed by synthesizing Mg-doped ZnO nanoparticles using a low cost and facile sol–gel route and were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence analysis. Morphological characterizations showed the formation of well-defined and highly crystalline ZnO nanoparticles on Si(100)/SiO2 substrate. Gas sensing characterization of dip coated Mg-doped ZnO thin films were performed in temperature range of 150–400 °C at different acetic acid vapor concentrations. At 300 °C, the sensitivity for pure ZnO, Zn0.98Mg0.02O and Zn0.94Mg0.06O samples at concentration of 200 ppm of acetic acid were 124, 78 and 67%, respectively. The highest sensitivity for Zn0.96Mg0.04O sample was 136% at the same vapor concentration and temperature. It showed a fast response time and recovery time (145 and 110 s, respectively).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Wang, Y. Kang, X. Liu et al., ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)CrossRef L. Wang, Y. Kang, X. Liu et al., ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)CrossRef
3.
Zurück zum Zitat R.K. Malik, R. Khanna, G.L. Sharma et al., Hydrogen sensing properties of copper-doped zinc oxide thin films. IEEE Sens. J. 15, 7021–7028 (2015)CrossRef R.K. Malik, R. Khanna, G.L. Sharma et al., Hydrogen sensing properties of copper-doped zinc oxide thin films. IEEE Sens. J. 15, 7021–7028 (2015)CrossRef
4.
Zurück zum Zitat B. Mandal, R. Singh, S. Mukherjee, Highly selective and sensitive methanol sensor using rose-like ZnO microcube and MoO3 micrograss based composite. IEEE Sens. J. 18, 2659–2666 (2018)CrossRef B. Mandal, R. Singh, S. Mukherjee, Highly selective and sensitive methanol sensor using rose-like ZnO microcube and MoO3 micrograss based composite. IEEE Sens. J. 18, 2659–2666 (2018)CrossRef
5.
Zurück zum Zitat J. Chen, X. Pan, F. Boussaid et al., Breath level acetone discrimination through temperature modulation of a hierarchical ZnO gas sensor. IEEE Sens. Lett. 1, 1–4 (2017)CrossRef J. Chen, X. Pan, F. Boussaid et al., Breath level acetone discrimination through temperature modulation of a hierarchical ZnO gas sensor. IEEE Sens. Lett. 1, 1–4 (2017)CrossRef
6.
Zurück zum Zitat W. Wang, Y. Tian, X. Wang et al., Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J. Mater. Sci. 48, 3232–3238 (2013)CrossRef W. Wang, Y. Tian, X. Wang et al., Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J. Mater. Sci. 48, 3232–3238 (2013)CrossRef
7.
Zurück zum Zitat J. Hu, F. Gao, S. Sang et al., Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)CrossRef J. Hu, F. Gao, S. Sang et al., Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)CrossRef
8.
Zurück zum Zitat A. Hastir, R.L. Opila, N. Kohli et al., Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)CrossRef A. Hastir, R.L. Opila, N. Kohli et al., Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)CrossRef
9.
Zurück zum Zitat B. Yuliarto, M.F. Ramadhani, N.L.W. Septiani et al., Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time. J. Mater. Sci. 52, 4543–4554 (2017)CrossRef B. Yuliarto, M.F. Ramadhani, N.L.W. Septiani et al., Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time. J. Mater. Sci. 52, 4543–4554 (2017)CrossRef
10.
Zurück zum Zitat M.T. Hosseinnejad, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Growth, characterization, and investigation of H2 gas sensing performance of Al-doped ZnO thin films synthesized by plasma focus device. J. Mater. Sci. Mater. Electron. 27, 11308–11318 (2016)CrossRef M.T. Hosseinnejad, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Growth, characterization, and investigation of H2 gas sensing performance of Al-doped ZnO thin films synthesized by plasma focus device. J. Mater. Sci. Mater. Electron. 27, 11308–11318 (2016)CrossRef
11.
Zurück zum Zitat M. Hjiri, N. Zahmouli, R. Dhahri et al., Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 28, 9667–9674 (2017)CrossRef M. Hjiri, N. Zahmouli, R. Dhahri et al., Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 28, 9667–9674 (2017)CrossRef
12.
Zurück zum Zitat G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (CRC Press, Boca Raton, 2011)CrossRef G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (CRC Press, Boca Raton, 2011)CrossRef
13.
Zurück zum Zitat G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)CrossRef G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)CrossRef
14.
Zurück zum Zitat Q. Jia, H. Ji, Y. Zhang et al., Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)CrossRef Q. Jia, H. Ji, Y. Zhang et al., Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)CrossRef
15.
Zurück zum Zitat X. Wang, F. Sun, Y. Duan et al., Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)CrossRef X. Wang, F. Sun, Y. Duan et al., Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)CrossRef
16.
Zurück zum Zitat M.-R. Yu, R.-J. Wu, M. Chavali, Effect of “Pt”loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens. Actuators B 153, 321–328 (2011)CrossRef M.-R. Yu, R.-J. Wu, M. Chavali, Effect of “Pt”loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens. Actuators B 153, 321–328 (2011)CrossRef
17.
Zurück zum Zitat P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci. 40, 4383–4385 (2005)CrossRef P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci. 40, 4383–4385 (2005)CrossRef
18.
Zurück zum Zitat S. Christoulakis, M. Suchea, M. Katharakis et al., ZnO nanostructured transparent thin films by PLD. Rev. Adv. Mater. Sci. 10, 331–334 (2005) S. Christoulakis, M. Suchea, M. Katharakis et al., ZnO nanostructured transparent thin films by PLD. Rev. Adv. Mater. Sci. 10, 331–334 (2005)
19.
Zurück zum Zitat M. Azuma, M. Ichimura, Fabrication of ZnO thin films by the photochemical deposition method. Mater. Res. Bull. 43, 3537–3542 (2008)CrossRef M. Azuma, M. Ichimura, Fabrication of ZnO thin films by the photochemical deposition method. Mater. Res. Bull. 43, 3537–3542 (2008)CrossRef
20.
Zurück zum Zitat S.P. Wang, C.X. Shan, B. Yao et al., Electrical and optical properties of ZnO films grown by molecular beam epitaxy. Appl. Surf. Sci. 255, 4913–4915 (2009)CrossRef S.P. Wang, C.X. Shan, B. Yao et al., Electrical and optical properties of ZnO films grown by molecular beam epitaxy. Appl. Surf. Sci. 255, 4913–4915 (2009)CrossRef
21.
Zurück zum Zitat R. Yousefi, F. Jamali-Sheini, A.K. Zak, A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions. Chem. Vap. Depos. 18, 215–220 (2012)CrossRef R. Yousefi, F. Jamali-Sheini, A.K. Zak, A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions. Chem. Vap. Depos. 18, 215–220 (2012)CrossRef
22.
Zurück zum Zitat M. Dwivedi, J. Bhargava, A. Sharma et al., CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. J. 14, 1577–1582 (2014)CrossRef M. Dwivedi, J. Bhargava, A. Sharma et al., CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. J. 14, 1577–1582 (2014)CrossRef
23.
Zurück zum Zitat M. Kashif, Y. Al-Douri, U. Hashim et al., Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. Micro Nano Lett. 7, 163–167 (2012)CrossRef M. Kashif, Y. Al-Douri, U. Hashim et al., Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. Micro Nano Lett. 7, 163–167 (2012)CrossRef
24.
Zurück zum Zitat C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, Oxford, 2011) C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, Oxford, 2011)
25.
Zurück zum Zitat T.T. Trinh, N.H. Tu, H.H. Le et al., Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sens. Actuators B 152, 73–81 (2011)CrossRef T.T. Trinh, N.H. Tu, H.H. Le et al., Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sens. Actuators B 152, 73–81 (2011)CrossRef
26.
Zurück zum Zitat M.K. Chakravarthi, B. Bharath, DIP coated thick films of ZNO and its ethanol sensing properties, in 8th International Symposium on Mechatronics and its Applications (ISMA), pp 1–5, 2012 M.K. Chakravarthi, B. Bharath, DIP coated thick films of ZNO and its ethanol sensing properties, in 8th International Symposium on Mechatronics and its Applications (ISMA), pp 1–5, 2012
27.
Zurück zum Zitat X.L. Cheng, H. Zhao, L.H. Huo et al., ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102, 248–252 (2004)CrossRef X.L. Cheng, H. Zhao, L.H. Huo et al., ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102, 248–252 (2004)CrossRef
28.
Zurück zum Zitat R.S. Ganesh, E. Durgadevi, M. Navaneethan et al., Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)CrossRef R.S. Ganesh, E. Durgadevi, M. Navaneethan et al., Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)CrossRef
29.
Zurück zum Zitat R. Zhang, W. Pang, Z. Feng et al., Enabling selectivity and fast recovery of ZnO nanowire gas sensors through resistive switching. Sens. Actuators B 238, 357–363 (2017)CrossRef R. Zhang, W. Pang, Z. Feng et al., Enabling selectivity and fast recovery of ZnO nanowire gas sensors through resistive switching. Sens. Actuators B 238, 357–363 (2017)CrossRef
30.
Zurück zum Zitat D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co: ZnO nanorods and its mechanism. Sens. Actuators B 243, 475–483 (2017)CrossRef D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co: ZnO nanorods and its mechanism. Sens. Actuators B 243, 475–483 (2017)CrossRef
31.
Zurück zum Zitat F. Meng, N. Hou, Z. Jin et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B 219, 209–217 (2015)CrossRef F. Meng, N. Hou, Z. Jin et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B 219, 209–217 (2015)CrossRef
32.
Zurück zum Zitat F. Meng, H. Zheng, Y. Sun et al., UV-activated room temperature single-sheet ZnO gas sensor. Micro Nano Lett. 12, 813–817 (2017)CrossRef F. Meng, H. Zheng, Y. Sun et al., UV-activated room temperature single-sheet ZnO gas sensor. Micro Nano Lett. 12, 813–817 (2017)CrossRef
33.
Zurück zum Zitat C.B. Jacobs, A.B. Maksov, E.S. Muckley et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017)CrossRef C.B. Jacobs, A.B. Maksov, E.S. Muckley et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017)CrossRef
34.
Zurück zum Zitat J. Gong, Y. Li, X. Chai et al., UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114, 1293–1298 (2009)CrossRef J. Gong, Y. Li, X. Chai et al., UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114, 1293–1298 (2009)CrossRef
35.
Zurück zum Zitat E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42, 416–432 (2017)CrossRef E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42, 416–432 (2017)CrossRef
37.
Zurück zum Zitat L. Giancaterini, C. Cantalini, M. Cittadini et al., Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol–gel-based ZnO thin-film sensors. IEEE Sens. J. 15, 1068–1076 (2015)CrossRef L. Giancaterini, C. Cantalini, M. Cittadini et al., Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol–gel-based ZnO thin-film sensors. IEEE Sens. J. 15, 1068–1076 (2015)CrossRef
38.
Zurück zum Zitat S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015)CrossRef S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015)CrossRef
39.
Zurück zum Zitat N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B 152, 155–161 (2011)CrossRef N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B 152, 155–161 (2011)CrossRef
40.
Zurück zum Zitat S. Wei, Y. Yu, M. Zhou, CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 64, 2284–2286 (2010)CrossRef S. Wei, Y. Yu, M. Zhou, CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 64, 2284–2286 (2010)CrossRef
41.
Zurück zum Zitat C. Dong, X. Liu, B. Han et al., Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B 224, 193–200 (2016)CrossRef C. Dong, X. Liu, B. Han et al., Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B 224, 193–200 (2016)CrossRef
42.
Zurück zum Zitat J. Guo, J. Zhang, M. Zhu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B 199, 339–345 (2014)CrossRef J. Guo, J. Zhang, M. Zhu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B 199, 339–345 (2014)CrossRef
43.
Zurück zum Zitat F. Meng, H. Zheng, Y. Sun et al., Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017)CrossRef F. Meng, H. Zheng, Y. Sun et al., Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017)CrossRef
45.
Zurück zum Zitat Q. Deng, S. Gao, T. Lei et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B 247, 903–915 (2017)CrossRef Q. Deng, S. Gao, T. Lei et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B 247, 903–915 (2017)CrossRef
46.
Zurück zum Zitat H. Gong, J.Q. Hu, J.H. Wang et al., Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115, 247–251 (2006)CrossRef H. Gong, J.Q. Hu, J.H. Wang et al., Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115, 247–251 (2006)CrossRef
47.
Zurück zum Zitat A.J. Chen, X.M. Wu, Z.D. Sha et al., Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D 39, 4762 (2006)CrossRef A.J. Chen, X.M. Wu, Z.D. Sha et al., Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D 39, 4762 (2006)CrossRef
48.
Zurück zum Zitat S.-Y. Kuo, W.-C. Chen, F.-I. Lai et al., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)CrossRef S.-Y. Kuo, W.-C. Chen, F.-I. Lai et al., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)CrossRef
49.
Zurück zum Zitat R.F. Dezfuly, R. Yousefi, F. Jamali-Sheini, Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455–7461 (2016)CrossRef R.F. Dezfuly, R. Yousefi, F. Jamali-Sheini, Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455–7461 (2016)CrossRef
52.
Zurück zum Zitat C. Jin, S. Park, H. Kim et al., CO gas-sensor based on Pt-functionalized Mg-doped ZnO nanowires. Bull. Korean Chem. Soc. 33, 1993–1997 (2012)CrossRef C. Jin, S. Park, H. Kim et al., CO gas-sensor based on Pt-functionalized Mg-doped ZnO nanowires. Bull. Korean Chem. Soc. 33, 1993–1997 (2012)CrossRef
55.
Zurück zum Zitat K. Karthick, D. Srinivasan, J.B. Christopher, Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci. Mater. Electron. 28, 11979–11986 (2017)CrossRef K. Karthick, D. Srinivasan, J.B. Christopher, Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci. Mater. Electron. 28, 11979–11986 (2017)CrossRef
58.
Zurück zum Zitat A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRef A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRef
59.
Zurück zum Zitat J. Zhang, F. Liao, Y. Zhu et al., Visible-light-enhanced gas sensing of CdSxSe1−x nanoribbons for acetic acid at room temperature. Sens. Actuators B 215, 497–503 (2015)CrossRef J. Zhang, F. Liao, Y. Zhu et al., Visible-light-enhanced gas sensing of CdSxSe1−x nanoribbons for acetic acid at room temperature. Sens. Actuators B 215, 497–503 (2015)CrossRef
60.
Zurück zum Zitat C. Wang, S. Ma, A. Sun et al., Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuators B 193, 326–333 (2014)CrossRef C. Wang, S. Ma, A. Sun et al., Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuators B 193, 326–333 (2014)CrossRef
61.
Zurück zum Zitat X.B. Li, Q.Q. Zhang, S.Y. Ma et al., Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping. Sens. Actuators B 195, 526–533 (2014)CrossRef X.B. Li, Q.Q. Zhang, S.Y. Ma et al., Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping. Sens. Actuators B 195, 526–533 (2014)CrossRef
62.
Zurück zum Zitat Z. Jiao, M. Wu, Z. Qin et al., Nano zinc ferrite acetic acid gas sensor for smuggled drug detection in southern China. Sens. Transducers Mag. 37, 24–29 (2003) Z. Jiao, M. Wu, Z. Qin et al., Nano zinc ferrite acetic acid gas sensor for smuggled drug detection in southern China. Sens. Transducers Mag. 37, 24–29 (2003)
63.
Zurück zum Zitat N. Al-Hardan, M.J. Abdullah, A.A. Aziz, H. Ahmad, ZnO gas sensor for testing vinegar acid concentrations. Sains Malays. 40, 67–70 (2011) N. Al-Hardan, M.J. Abdullah, A.A. Aziz, H. Ahmad, ZnO gas sensor for testing vinegar acid concentrations. Sains Malays. 40, 67–70 (2011)
64.
Zurück zum Zitat A. Sinha, S. Chakrabarti, B. Chaudhuri et al., Oxidative degradation of strong acetic acid liquor in wastewater emanating from hazardous industries. Ind. Eng. Chem. Res. 46, 3101–3107 (2007)CrossRef A. Sinha, S. Chakrabarti, B. Chaudhuri et al., Oxidative degradation of strong acetic acid liquor in wastewater emanating from hazardous industries. Ind. Eng. Chem. Res. 46, 3101–3107 (2007)CrossRef
66.
Zurück zum Zitat J.H. Li, Y.C. Liu, C.L. Shao et al., Effects of thermal annealing on the structural and optical properties of MgxZn1−xO nanocrystals. J. Colloid Interface Sci. 283, 513–517 (2005)CrossRef J.H. Li, Y.C. Liu, C.L. Shao et al., Effects of thermal annealing on the structural and optical properties of MgxZn1−xO nanocrystals. J. Colloid Interface Sci. 283, 513–517 (2005)CrossRef
67.
Zurück zum Zitat G. Ning, X. Zhao, J. Li, Structure and optical properties of MgxZn1−xO nanoparticles prepared by sol–gel method. Opt. Mater. 27, 1–5 (2004)CrossRef G. Ning, X. Zhao, J. Li, Structure and optical properties of MgxZn1−xO nanoparticles prepared by sol–gel method. Opt. Mater. 27, 1–5 (2004)CrossRef
68.
Zurück zum Zitat K. Vijayalakshmi, K. Karthick, Influence of annealing on the photoluminescence of nanocrystalline ZnO synthesized by microwave processing. Philos. Mag. Lett. 92, 710–717 (2012)CrossRef K. Vijayalakshmi, K. Karthick, Influence of annealing on the photoluminescence of nanocrystalline ZnO synthesized by microwave processing. Philos. Mag. Lett. 92, 710–717 (2012)CrossRef
69.
Zurück zum Zitat R. Dhahri, M. Hjiri, L. El Mir et al., CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Devices 2, 34–40 (2017)CrossRef R. Dhahri, M. Hjiri, L. El Mir et al., CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Devices 2, 34–40 (2017)CrossRef
71.
Zurück zum Zitat M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering. J. Am. Ceram. Soc. 59, 4–8 (1976)CrossRef M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering. J. Am. Ceram. Soc. 59, 4–8 (1976)CrossRef
72.
Zurück zum Zitat A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRef A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRef
73.
Zurück zum Zitat S. Fujitsu, K. Koumoto, H. Yanagida et al., Change in the oxidation state of the adsorbed oxygen equilibrated at 25 C on ZnO surface during room temperature annealing after rapid quenching. Jpn. J. Appl. Phys. 38, 1534 (1999)CrossRef S. Fujitsu, K. Koumoto, H. Yanagida et al., Change in the oxidation state of the adsorbed oxygen equilibrated at 25 C on ZnO surface during room temperature annealing after rapid quenching. Jpn. J. Appl. Phys. 38, 1534 (1999)CrossRef
74.
Zurück zum Zitat L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)CrossRef L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)CrossRef
75.
Zurück zum Zitat J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66, 277–279 (2000)CrossRef J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66, 277–279 (2000)CrossRef
76.
Zurück zum Zitat M.A. Carpenter, S. Mathur, A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012) M.A. Carpenter, S. Mathur, A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012)
77.
Zurück zum Zitat D. Mishra, A. Srivastava, A. Srivastava, R.K. Shukla, Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl. Surf. Sci. 255, 2947–2950 (2008)CrossRef D. Mishra, A. Srivastava, A. Srivastava, R.K. Shukla, Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl. Surf. Sci. 255, 2947–2950 (2008)CrossRef
Metadaten
Titel
Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method
verfasst von
Vahid Khorramshahi
Javad Karamdel
Ramin Yousefi
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 17/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9604-0

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Zur Ausgabe

Neuer Inhalt