Skip to main content

2019 | OriginalPaper | Buchkapitel

5. ACLT-Based QRS Detection and ECG Compression Architecture

verfasst von : Temesghen Tekeste Habte, Hani Saleh, Baker Mohammad, Mohammed Ismail

Erschienen in: Ultra Low Power ECG Processing System for IoT Devices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a QRS detection architecture based on absolute value curve length transform is presented. Ultra-low power and optimized architectures are crucial for IoT devices. Moreover, optimized ECG processing architectures with an adequate level of accuracy is a necessity for IoT medical wearable devices. This chapter presents a real-time QRS detector and ECG compression architecture for energy constrained IoT healthcare wearable devices. The implementation of the proposed architectures requires adders, shifters, and comparators only, and removes the need for any multipliers. QRS detections are accomplished by using adaptive thresholds in the ACLT-transformed ECG-signal. The proposed QRS detector achieved a sensitivity of 99.37% and a predictivity of 99.38% when validated using databases acquired from Physionet. Furthermore, a lossless compression technique was incorporated into the proposed architecture that uses the ECG signal first derivative and variable-bit-length encoding. An average compression ratio of 2.05 was achieved when evaluated using the MIT-BIH database. The proposed QRS architecture was implemented using a 65 nm GF low-power process, it consumed an ultra-low power of 6.5 nW when operated at a supply of 1 V and at a frequency of 250 Hz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
12.
Zurück zum Zitat N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Ismail, Low-power ECG-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1962–1974 (2016)CrossRef N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Ismail, Low-power ECG-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1962–1974 (2016)CrossRef
22.
Zurück zum Zitat G.D. Clifford, F. Azuaje, P.E. McSharry, Advanced Methods and Tools for ECG Data Analysis (Artech House, Boston, 2006) G.D. Clifford, F. Azuaje, P.E. McSharry, Advanced Methods and Tools for ECG Data Analysis (Artech House, Boston, 2006)
23.
Zurück zum Zitat P. Kligfield, The centennial of the Einthoven electrocardiogram. J. Electrocardiogr. 35(4), 123–129 (2002)CrossRef P. Kligfield, The centennial of the Einthoven electrocardiogram. J. Electrocardiogr. 35(4), 123–129 (2002)CrossRef
24.
Zurück zum Zitat J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRef J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRef
25.
Zurück zum Zitat P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–1165 (1986)CrossRef P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–1165 (1986)CrossRef
26.
Zurück zum Zitat M. Niknazar, B. Rivet, C. Jutten, Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 60(5), 1345–1352 (2013)CrossRef M. Niknazar, B. Rivet, C. Jutten, Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 60(5), 1345–1352 (2013)CrossRef
27.
Zurück zum Zitat J. Martinez, R. Almeida et al., A wavelet-based ECG delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–348 (2004)CrossRef J. Martinez, R. Almeida et al., A wavelet-based ECG delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–348 (2004)CrossRef
28.
Zurück zum Zitat M.W. Phyu, Y. Zheng, B. Zhao, L. Xin, Y.S. Wang, A real-time ECG QRS detection ASIC based on wavelet multiscale analysis, in IEEE Asian Solid-State Circuits Conference (IEEE, New York, 2009), pp. 293–296 M.W. Phyu, Y. Zheng, B. Zhao, L. Xin, Y.S. Wang, A real-time ECG QRS detection ASIC based on wavelet multiscale analysis, in IEEE Asian Solid-State Circuits Conference (IEEE, New York, 2009), pp. 293–296
30.
Zurück zum Zitat S. Banerjee, M. Mitra, Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRef S. Banerjee, M. Mitra, Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRef
31.
Zurück zum Zitat I.S. Murthy, G.S. Prasad, Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng. 39(7), 741–751 (1992)CrossRef I.S. Murthy, G.S. Prasad, Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng. 39(7), 741–751 (1992)CrossRef
32.
Zurück zum Zitat S. Pal, M. Mitra, Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42(1), 83–92 (2012)CrossRef S. Pal, M. Mitra, Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42(1), 83–92 (2012)CrossRef
33.
Zurück zum Zitat R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10, 38 (2011)CrossRef R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10, 38 (2011)CrossRef
52.
Zurück zum Zitat Y.P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, D. Sylvester, An injectable 64 nW ECG mixed-signal SoC in 65 nm for Arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)CrossRef Y.P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, D. Sylvester, An injectable 64 nW ECG mixed-signal SoC in 65 nm for Arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)CrossRef
54.
Zurück zum Zitat W. Zong, G.B. Moody, D. Jiang, A robust open-source algorithm to detect onset and duration of QRS complexes, in Computers in Cardiology, 2003 (IEEE, New York, 2003), pp. 737–740 W. Zong, G.B. Moody, D. Jiang, A robust open-source algorithm to detect onset and duration of QRS complexes, in Computers in Cardiology, 2003 (IEEE, New York, 2003), pp. 737–740
59.
Zurück zum Zitat T. Tekeste, N. Bayasi, H. Saleh, A. Khandoker, B. Mohammad, M. Al-Qutayri, M. Ismail, Adaptive ECG interval extraction, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2015), pp. 998–1001 T. Tekeste, N. Bayasi, H. Saleh, A. Khandoker, B. Mohammad, M. Al-Qutayri, M. Ismail, Adaptive ECG interval extraction, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2015), pp. 998–1001
60.
Zurück zum Zitat L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M.L. Stefanizzi, L. Tarricone, An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)CrossRef L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M.L. Stefanizzi, L. Tarricone, An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)CrossRef
61.
Zurück zum Zitat M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos, B. Kantarci, S. Andreescu, Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges, in 2015 IEEE International Conference on Services Computing (SCC) (IEEE, New York, 2015), pp. 285–292 M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos, B. Kantarci, S. Andreescu, Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges, in 2015 IEEE International Conference on Services Computing (SCC) (IEEE, New York, 2015), pp. 285–292
62.
Zurück zum Zitat S.Y. Ge, S.M. Chun, H.S. Kim, J.T. Park, Design and implementation of interoperable IoT healthcare system based on international standards, in 13th IEEE Annual Consumer Communications Networking Conference (CCNC), Jan 2016, pp. 119–124 S.Y. Ge, S.M. Chun, H.S. Kim, J.T. Park, Design and implementation of interoperable IoT healthcare system based on international standards, in 13th IEEE Annual Consumer Communications Networking Conference (CCNC), Jan 2016, pp. 119–124
63.
Zurück zum Zitat F. Fernandez, G.C. Pallis, Opportunities and challenges of the internet of things for healthcare: systems engineering perspective, in 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Nov 2014, pp. 263–266 F. Fernandez, G.C. Pallis, Opportunities and challenges of the internet of things for healthcare: systems engineering perspective, in 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Nov 2014, pp. 263–266
64.
Zurück zum Zitat R. Gutiérrez-Rivas, J.J. García, W.P. Marnane, Á. Hernández, Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sensors J. 15(10), 6036–6043 (2015)CrossRef R. Gutiérrez-Rivas, J.J. García, W.P. Marnane, Á. Hernández, Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sensors J. 15(10), 6036–6043 (2015)CrossRef
65.
Zurück zum Zitat C.J. Deepu, X. Zhang, W.-S. Liew, D.L.T. Wong, Y. Lian, An ECG-on-Chip with 535 nW/channel integrated lossless data compressor for wireless sensors. IEEE J. Solid State Circuits 49(11), 2435–2448 (2014)CrossRef C.J. Deepu, X. Zhang, W.-S. Liew, D.L.T. Wong, Y. Lian, An ECG-on-Chip with 535 nW/channel integrated lossless data compressor for wireless sensors. IEEE J. Solid State Circuits 49(11), 2435–2448 (2014)CrossRef
66.
Zurück zum Zitat S.L. Chen, J.G. Wang, VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)MathSciNetCrossRef S.L. Chen, J.G. Wang, VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)MathSciNetCrossRef
67.
Zurück zum Zitat T. Marisa, T. Niederhauser, A. Haeberlin, R.A. Wildhaber, R. Vogel, M. Jacomet, J. Goette, Bufferless compression of asynchronously sampled ECG signals in cubic Hermitian vector space. IEEE Trans. Biomed. Eng. 62(12), 2878–2887 (2015)CrossRef T. Marisa, T. Niederhauser, A. Haeberlin, R.A. Wildhaber, R. Vogel, M. Jacomet, J. Goette, Bufferless compression of asynchronously sampled ECG signals in cubic Hermitian vector space. IEEE Trans. Biomed. Eng. 62(12), 2878–2887 (2015)CrossRef
68.
Zurück zum Zitat S. Feizi, G. Angelopoulos, V.K. Goyal, M. Médard, Backward adaptation for power efficient sampling. IEEE Trans. Signal Process. 62(16), 4327–4338 (2014)MathSciNetCrossRef S. Feizi, G. Angelopoulos, V.K. Goyal, M. Médard, Backward adaptation for power efficient sampling. IEEE Trans. Signal Process. 62(16), 4327–4338 (2014)MathSciNetCrossRef
69.
Zurück zum Zitat A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)CrossRef A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)CrossRef
70.
Zurück zum Zitat TI, MSP430FR2433 mixed-signal microcontroller (2015) TI, MSP430FR2433 mixed-signal microcontroller (2015)
71.
Zurück zum Zitat ATMEL, ATMEL 8-BIT Microcontroller with 4/8/16/32Kbytes in-system programmable flash (2015) ATMEL, ATMEL 8-BIT Microcontroller with 4/8/16/32Kbytes in-system programmable flash (2015)
72.
Zurück zum Zitat M. Alhawari, D. Kilani, B. Mohammad, H. Saleh, M. Ismail, An efficient thermal energy harvesting and power management for μWatt wearable biochips, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016), pp. 2258–2261CrossRef M. Alhawari, D. Kilani, B. Mohammad, H. Saleh, M. Ismail, An efficient thermal energy harvesting and power management for μWatt wearable biochips, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016), pp. 2258–2261CrossRef
73.
Zurück zum Zitat C.-I. Ieong, P.-I. Mak, C.-P. Lam, C. Dong, M.-I. Vai, P.-U. Mak, S.-H. Pun, F. Wan, R.P. Martins, A 0.83-QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6), 586–595 (2012) C.-I. Ieong, P.-I. Mak, C.-P. Lam, C. Dong, M.-I. Vai, P.-U. Mak, S.-H. Pun, F. Wan, R.P. Martins, A 0.83-QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6), 586–595 (2012)
74.
Zurück zum Zitat C.J. Deepu, C.-H. Heng, Y. Lian, A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans. Biomed. Circuits Syst. 11(2), 245–254 (2016)CrossRef C.J. Deepu, C.-H. Heng, Y. Lian, A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans. Biomed. Circuits Syst. 11(2), 245–254 (2016)CrossRef
75.
Zurück zum Zitat M. Ishijima, S.B. Shin, G.H. Hostetter, J. Sklansky, Scan-along polygonal approximation for data compression of electrocardiograms. IEEE Trans. Biomed. Eng. BME-30(11), 723–729 (1983)CrossRef M. Ishijima, S.B. Shin, G.H. Hostetter, J. Sklansky, Scan-along polygonal approximation for data compression of electrocardiograms. IEEE Trans. Biomed. Eng. BME-30(11), 723–729 (1983)CrossRef
76.
Zurück zum Zitat E. Tsimbalo, X. Fafoutis, R.J. Piechocki, CRC error correction in IoT applications. IEEE Trans. Ind. Inf. 13(1), 361–369 (2017)CrossRef E. Tsimbalo, X. Fafoutis, R.J. Piechocki, CRC error correction in IoT applications. IEEE Trans. Ind. Inf. 13(1), 361–369 (2017)CrossRef
78.
Zurück zum Zitat P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Computers in Cardiology (IEEE, New York, 1997), pp. 673–676 P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Computers in Cardiology (IEEE, New York, 1997), pp. 673–676
79.
Zurück zum Zitat G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRef G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRef
Metadaten
Titel
ACLT-Based QRS Detection and ECG Compression Architecture
verfasst von
Temesghen Tekeste Habte
Hani Saleh
Baker Mohammad
Mohammed Ismail
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-97016-5_5

Neuer Inhalt