Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 12/2023

21.06.2023 | Original Article

Adaptive affinity matrix learning for dimensionality reduction

verfasst von: Junran He, Xiaozhao Fang, Peipei Kang, Lin Jiang, Lunke Fei, Na Han, Weijun Sun

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional graph-based dimensionality reduction methods treat graph leaning and subspace learning as two separate steps, and fix the graph during subspace learning. However, the graph obtained from the original data may be not optimal, because the original high-dimensional data contains redundant information and noise, thus the subsequent subspace learning based on the graph may be affected. In this paper, we propose a model called adaptive affinity matrix learning (AAML) for unsupervised dimensionality reduction. Different from traditional graph-based methods, we integrate two steps into a unified framework and adaptively adjust the learned graph. To obtain an ideal neighbor assignment, we introduce a rank constraint to the Laplacian matrix of the affinity matrix. In this way, the number of connected components of the graph is exactly equal to the number of class numbers. By approximating two low-dimensional subspaces, the affinity matrix can obtain the original neighbor structure from the similarity matrix, and the projection matrix can get low-rank information from the affinity matrix, then a distinctive subspace can be learned. Moreover, we propose an efficient algorithm to solve the optimization problem of AAML. Experimental results on four data sets show the effectiveness of the proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
2.
Zurück zum Zitat Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
3.
Zurück zum Zitat Martinez AM, Kak AC (2001) Pca versus lda. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRef Martinez AM, Kak AC (2001) Pca versus lda. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRef
4.
Zurück zum Zitat Zhao M, Jia Z, Cai Y, Chen X, Gong D (2021) Advanced variations of two-dimensional principal component analysis for face recognition. Neurocomputing 452:653–664CrossRef Zhao M, Jia Z, Cai Y, Chen X, Gong D (2021) Advanced variations of two-dimensional principal component analysis for face recognition. Neurocomputing 452:653–664CrossRef
5.
Zurück zum Zitat Wang Q, Gao Q, Gao X, Nie F (2018) \(\ell _{2, p}\) -norm based PCA for image recognition. IEEE Trans Image Process 27(3):1336–1346MathSciNetMATHCrossRef Wang Q, Gao Q, Gao X, Nie F (2018) \(\ell _{2, p}\) -norm based PCA for image recognition. IEEE Trans Image Process 27(3):1336–1346MathSciNetMATHCrossRef
6.
Zurück zum Zitat Zhou J, Qi H, Chen Y, Wang H (2021) Progressive principle component analysis for compressing deep convolutional neural networks. Neurocomputing 440:197–206CrossRef Zhou J, Qi H, Chen Y, Wang H (2021) Progressive principle component analysis for compressing deep convolutional neural networks. Neurocomputing 440:197–206CrossRef
7.
Zurück zum Zitat Wen J, Fang X, Cui J, Fei L, Yan K, Chen Y, Xu Y (2019) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29(2):390–403CrossRef Wen J, Fang X, Cui J, Fei L, Yan K, Chen Y, Xu Y (2019) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29(2):390–403CrossRef
8.
Zurück zum Zitat Li C-N, Shao Y-H, Chen W-J, Wang Z, Deng N-Y (2021) Generalized two-dimensional linear discriminant analysis with regularization. Neural Netw 142:73–91CrossRef Li C-N, Shao Y-H, Chen W-J, Wang Z, Deng N-Y (2021) Generalized two-dimensional linear discriminant analysis with regularization. Neural Netw 142:73–91CrossRef
9.
Zurück zum Zitat Dornaika F, Khoder A (2020) Linear embedding by joint robust discriminant analysis and inter-class sparsity. Neural Netw 127:141–159MATHCrossRef Dornaika F, Khoder A (2020) Linear embedding by joint robust discriminant analysis and inter-class sparsity. Neural Netw 127:141–159MATHCrossRef
10.
Zurück zum Zitat Ren Z, Sun Q (2021) Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learning Syst 32(5):1839–1851MathSciNetCrossRef Ren Z, Sun Q (2021) Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learning Syst 32(5):1839–1851MathSciNetCrossRef
11.
Zurück zum Zitat Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L (2021) Structured graph learning for clustering and semi-supervised classification. Pattern Recogn 110:107627CrossRef Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L (2021) Structured graph learning for clustering and semi-supervised classification. Pattern Recogn 110:107627CrossRef
12.
Zurück zum Zitat Yang J, Gao X, Zhang D, Yang J-Y (2005) Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recogn 38(10):1784–1787MATHCrossRef Yang J, Gao X, Zhang D, Yang J-Y (2005) Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recogn 38(10):1784–1787MATHCrossRef
13.
Zurück zum Zitat Tonin F, Patrinos P, Suykens JA (2021) Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints. Neural Netw 142:661–679CrossRef Tonin F, Patrinos P, Suykens JA (2021) Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints. Neural Netw 142:661–679CrossRef
14.
Zurück zum Zitat Zheng Y, Zhang X, Yang S, Jiao L (2013) Low-rank representation with local constraint for graph construction. Neurocomputing 122:398–405CrossRef Zheng Y, Zhang X, Yang S, Jiao L (2013) Low-rank representation with local constraint for graph construction. Neurocomputing 122:398–405CrossRef
15.
Zurück zum Zitat Luo F, Huang Y, Tu W, Liu J (2020) Local manifold sparse model for image classification. Neurocomputing 382:162–173CrossRef Luo F, Huang Y, Tu W, Liu J (2020) Local manifold sparse model for image classification. Neurocomputing 382:162–173CrossRef
16.
Zurück zum Zitat Peng Y, Lu B-L, Wang S (2015) Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning. Neural Netw 65:1–17MATHCrossRef Peng Y, Lu B-L, Wang S (2015) Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning. Neural Netw 65:1–17MATHCrossRef
17.
Zurück zum Zitat Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396MATHCrossRef Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396MATHCrossRef
18.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
19.
Zurück zum Zitat Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef
20.
Zurück zum Zitat Cai D, He X, Han J et al. (2007) Isometric projection. In: AAAI, pp 528–533 Cai D, He X, Han J et al. (2007) Isometric projection. In: AAAI, pp 528–533
21.
Zurück zum Zitat He X, Cai D, Yan S, Zhang HJ (2005) Neighborhood preserving embedding. Tenth IEEE international conference on computer vision (ICCV’05), vol 2. IEEE, pp 1208–1213 He X, Cai D, Yan S, Zhang HJ (2005) Neighborhood preserving embedding. Tenth IEEE international conference on computer vision (ICCV’05), vol 2. IEEE, pp 1208–1213
22.
Zurück zum Zitat He X, Niyogi P (2004) Locality preserving projections. Adv Neural Inf Process Syst 16(16):153–160 He X, Niyogi P (2004) Locality preserving projections. Adv Neural Inf Process Syst 16(16):153–160
23.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341MATHCrossRef Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341MATHCrossRef
24.
Zurück zum Zitat Liu J, Xiu X, Jiang X, Liu W, Zeng X, Wang M, Chen H (2021) Manifold constrained joint sparse learning via non-convex regularization. Neurocomputing 458:112–126CrossRef Liu J, Xiu X, Jiang X, Liu W, Zeng X, Wang M, Chen H (2021) Manifold constrained joint sparse learning via non-convex regularization. Neurocomputing 458:112–126CrossRef
25.
Zurück zum Zitat Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRef Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRef
26.
Zurück zum Zitat Lu G-F, Yu Q-R, Wang Y, Tang G (2020) Hyper-laplacian regularized multi-view subspace clustering with low-rank tensor constraint. Neural Netw 125:214–223MATHCrossRef Lu G-F, Yu Q-R, Wang Y, Tang G (2020) Hyper-laplacian regularized multi-view subspace clustering with low-rank tensor constraint. Neural Netw 125:214–223MATHCrossRef
27.
Zurück zum Zitat Zhan S, Wu J, Han N, Wen J, Fang X (2019) Unsupervised feature extraction by low-rank and sparsity preserving embedding. Neural Netw 109:56–66CrossRef Zhan S, Wu J, Han N, Wen J, Fang X (2019) Unsupervised feature extraction by low-rank and sparsity preserving embedding. Neural Netw 109:56–66CrossRef
28.
Zurück zum Zitat Fang X, Han N, Wu J, Xu Y, Yang J, Wong WK, Li X (2018) Approximate low-rank projection learning for feature extraction. IEEE Trans Neural Netw Learning Syst 29(11):5228–5241MathSciNetCrossRef Fang X, Han N, Wu J, Xu Y, Yang J, Wong WK, Li X (2018) Approximate low-rank projection learning for feature extraction. IEEE Trans Neural Netw Learning Syst 29(11):5228–5241MathSciNetCrossRef
29.
Zurück zum Zitat Wen J, Han N, Fang X, Fei L, Yan K, Zhan S (2018) Low-rank preserving projection via graph regularized reconstruction. IEEE Trans Cybern 49(4):1279–1291CrossRef Wen J, Han N, Fang X, Fei L, Yan K, Zhan S (2018) Low-rank preserving projection via graph regularized reconstruction. IEEE Trans Cybern 49(4):1279–1291CrossRef
30.
Zurück zum Zitat Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. pp 977–986 Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. pp 977–986
31.
Zurück zum Zitat Wong WK, Lai Z, Wen J, Fang X, Lu Y (2017) Low-rank embedding for robust image feature extraction. IEEE Trans Image Process 26(6):2905–2917MathSciNetMATHCrossRef Wong WK, Lai Z, Wen J, Fang X, Lu Y (2017) Low-rank embedding for robust image feature extraction. IEEE Trans Image Process 26(6):2905–2917MathSciNetMATHCrossRef
32.
Zurück zum Zitat Chung FR, Graham FC (1997) Spectral graph theory. American Mathematical Soc., p 92 Chung FR, Graham FC (1997) Spectral graph theory. American Mathematical Soc., p 92
33.
Zurück zum Zitat Oellermann OR, Schwenk AJ (1991) The laplacian spectrum of graphs. University of Manitoba Oellermann OR, Schwenk AJ (1991) The laplacian spectrum of graphs. University of Manitoba
34.
Zurück zum Zitat Fan K (1949) On a theorem of Weyl concerning eigenvalues of linear transformations i. Proc Natl Acad Sci USA 35(11):652MathSciNetCrossRef Fan K (1949) On a theorem of Weyl concerning eigenvalues of linear transformations i. Proc Natl Acad Sci USA 35(11):652MathSciNetCrossRef
35.
Zurück zum Zitat Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices,” arXiv preprint arXiv:1009.5055 Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices,” arXiv preprint arXiv:​1009.​5055
36.
Zurück zum Zitat Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982MathSciNetMATHCrossRef Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982MathSciNetMATHCrossRef
37.
Zurück zum Zitat Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef
38.
Zurück zum Zitat Sim T, Baker S, Bsat M (2003) The cmu pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef Sim T, Baker S, Bsat M (2003) The cmu pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef
39.
Zurück zum Zitat Martinez AM, Benavente R (1998) The ar face database. cvc technical report Martinez AM, Benavente R (1998) The ar face database. cvc technical report
40.
Zurück zum Zitat Cai D, He X (2005) Orthogonal locality preserving indexing. In: Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval. pp. 3–10 Cai D, He X (2005) Orthogonal locality preserving indexing. In: Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval. pp. 3–10
41.
Zurück zum Zitat Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286MathSciNetCrossRef Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286MathSciNetCrossRef
42.
Zurück zum Zitat Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. 2011 international conference on computer vision. IEEE, pp 615–1622 Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. 2011 international conference on computer vision. IEEE, pp 615–1622
43.
Zurück zum Zitat Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef
44.
Zurück zum Zitat Zhang Y, Xiang M, Yang B (2017) Low-rank preserving embedding. Pattern Recogn 70:112–125CrossRef Zhang Y, Xiang M, Yang B (2017) Low-rank preserving embedding. Pattern Recogn 70:112–125CrossRef
45.
Zurück zum Zitat Lu Y, Lai Z, Xu Y, Li X, Zhang D, Yuan C (2015) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913CrossRef Lu Y, Lai Z, Xu Y, Li X, Zhang D, Yuan C (2015) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913CrossRef
46.
Zurück zum Zitat Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRef Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRef
47.
Zurück zum Zitat Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer vision. IEEE, pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer vision. IEEE, pp 471–478
48.
Zurück zum Zitat Xiang S, Nie F, Meng G, Pan C, Zhang C (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learning Syst 23(11):1738–1754CrossRef Xiang S, Nie F, Meng G, Pan C, Zhang C (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learning Syst 23(11):1738–1754CrossRef
49.
Zurück zum Zitat Zhang X-Y, Wang L, Xiang S, Liu C-L (2014) Retargeted least squares regression algorithm. IEEE Trans Neural Netw Learning Syst 26(9):2206–2213MathSciNetCrossRef Zhang X-Y, Wang L, Xiang S, Liu C-L (2014) Retargeted least squares regression algorithm. IEEE Trans Neural Netw Learning Syst 26(9):2206–2213MathSciNetCrossRef
50.
Zurück zum Zitat Wen J, Xu Y, Li Z, Ma Z, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36–47MATHCrossRef Wen J, Xu Y, Li Z, Ma Z, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36–47MATHCrossRef
51.
Zurück zum Zitat Lai Z, Mo D, Wong WK, Xu Y, Miao D, Zhang D (2017) Robust discriminant regression for feature extraction. IEEE Trans Cybern 48(8):2472–2484CrossRef Lai Z, Mo D, Wong WK, Xu Y, Miao D, Zhang D (2017) Robust discriminant regression for feature extraction. IEEE Trans Cybern 48(8):2472–2484CrossRef
52.
Zurück zum Zitat Fang X, Teng S, Lai Z, He Z, Xie S, Wong WK (2017) Robust latent subspace learning for image classification. IEEE Trans Neural Netw Learning Syst 29(6):2502–2515MathSciNetCrossRef Fang X, Teng S, Lai Z, He Z, Xie S, Wong WK (2017) Robust latent subspace learning for image classification. IEEE Trans Neural Netw Learning Syst 29(6):2502–2515MathSciNetCrossRef
53.
Zurück zum Zitat Zhan S, Wu J, Han N, Wen J, Fang X (2020) Group low-rank representation-based discriminant linear regression. IEEE Trans Circuits Syst Video Technol 30(3):760–770CrossRef Zhan S, Wu J, Han N, Wen J, Fang X (2020) Group low-rank representation-based discriminant linear regression. IEEE Trans Circuits Syst Video Technol 30(3):760–770CrossRef
54.
Zurück zum Zitat Zhang C, Li H, Qian Y, Chen C, Gao Y (2021) Pairwise relations oriented discriminative regression. IEEE Trans Circuits Syst Video Technol 31(7):2646–2660CrossRef Zhang C, Li H, Qian Y, Chen C, Gao Y (2021) Pairwise relations oriented discriminative regression. IEEE Trans Circuits Syst Video Technol 31(7):2646–2660CrossRef
Metadaten
Titel
Adaptive affinity matrix learning for dimensionality reduction
verfasst von
Junran He
Xiaozhao Fang
Peipei Kang
Lin Jiang
Lunke Fei
Na Han
Weijun Sun
Publikationsdatum
21.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 12/2023
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01881-y

Weitere Artikel der Ausgabe 12/2023

International Journal of Machine Learning and Cybernetics 12/2023 Zur Ausgabe

Neuer Inhalt