Skip to main content

2015 | OriginalPaper | Buchkapitel

Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks

verfasst von : Sergiy Bogomolov, Thomas A. Henzinger, Andreas Podelski, Jakob Ruess, Christian Schilling

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bertaux, F., Stoma, S., Drasdo, D., Batt, G.: Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput. Biol. 10(10), e1003893 (2014)CrossRef Bertaux, F., Stoma, S., Drasdo, D., Batt, G.: Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput. Biol. 10(10), e1003893 (2014)CrossRef
2.
Zurück zum Zitat Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)MathSciNetCrossRefMATH Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef
4.
5.
Zurück zum Zitat Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)MathSciNetCrossRef Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)MathSciNetCrossRef
6.
Zurück zum Zitat Hasty, J., Pradines, J., Dolnik, M., Collins, J.: Noise-based switches and amplifiers for gene expression. Proc. Nat. Acad. Sci. U.S.A. 97(5), 2075–2080 (2000)CrossRef Hasty, J., Pradines, J., Dolnik, M., Collins, J.: Noise-based switches and amplifiers for gene expression. Proc. Nat. Acad. Sci. U.S.A. 97(5), 2075–2080 (2000)CrossRef
8.
Zurück zum Zitat Hespanha, J.: Moment closure for biochemical networks. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (IEEE), St Julians, Malta, pp. 142–147 (2008) Hespanha, J.: Moment closure for biochemical networks. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (IEEE), St Julians, Malta, pp. 142–147 (2008)
9.
Zurück zum Zitat Kügler, P.: Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7(8), e43001 (2012)CrossRef Kügler, P.: Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7(8), e43001 (2012)CrossRef
10.
Zurück zum Zitat Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)CrossRef Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)CrossRef
12.
Zurück zum Zitat McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. U.S.A. 94(3), 814–819 (1997)CrossRef McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. U.S.A. 94(3), 814–819 (1997)CrossRef
13.
Zurück zum Zitat Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)CrossRef Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)CrossRef
14.
Zurück zum Zitat Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013)CrossRef Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013)CrossRef
15.
Zurück zum Zitat Parise, F., Lygeros, J., Ruess, J.: Bayesian inference for stochastic individual-based models of ecological systems: an optimal pest control case study. Front. Environ. Sci. 3, 42 (2015)CrossRef Parise, F., Lygeros, J., Ruess, J.: Bayesian inference for stochastic individual-based models of ecological systems: an optimal pest control case study. Front. Environ. Sci. 3, 42 (2015)CrossRef
16.
Zurück zum Zitat Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. (TOMACS) 25(2), 8 (2015)MathSciNetCrossRef Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. (TOMACS) 25(2), 8 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588 (2013)CrossRef Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588 (2013)CrossRef
18.
Zurück zum Zitat Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135, 165102 (2011)CrossRef Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135, 165102 (2011)CrossRef
19.
Zurück zum Zitat Ruess, J., Parise, F., Milias-Argeitis, A., Khammash, M., Lygeros, J.: Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Nat. Acad. Sci. U.S.A. 112(26), 8148–8153 (2015)CrossRef Ruess, J., Parise, F., Milias-Argeitis, A., Khammash, M., Lygeros, J.: Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Nat. Acad. Sci. U.S.A. 112(26), 8148–8153 (2015)CrossRef
20.
Zurück zum Zitat Samoilov, M., Arkin, A.: Deviant effects in molecular reaction pathways. Nat. Biotechnol. 24(10), 1235–1240 (2006)CrossRef Samoilov, M., Arkin, A.: Deviant effects in molecular reaction pathways. Nat. Biotechnol. 24(10), 1235–1240 (2006)CrossRef
21.
Zurück zum Zitat Singh, A., Hespanha, J.: Lognormal moment closures for biochemical reactions. In: 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006) Singh, A., Hespanha, J.: Lognormal moment closures for biochemical reactions. In: 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)
22.
Zurück zum Zitat Whittle, P.: On the use of the normal approximation in the treatment of stochastic processes. J. Roy. Stat. Soc.: Ser. A (Methodol.) 19, 268–281 (1957)MathSciNetMATH Whittle, P.: On the use of the normal approximation in the treatment of stochastic processes. J. Roy. Stat. Soc.: Ser. A (Methodol.) 19, 268–281 (1957)MathSciNetMATH
23.
Zurück zum Zitat Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 42 (2010)CrossRef Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 42 (2010)CrossRef
24.
Zurück zum Zitat Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. Proc. Nat. Acad. Sci. U.S.A. 109(21), 8340–8345 (2012)CrossRef Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. Proc. Nat. Acad. Sci. U.S.A. 109(21), 8340–8345 (2012)CrossRef
Metadaten
Titel
Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks
verfasst von
Sergiy Bogomolov
Thomas A. Henzinger
Andreas Podelski
Jakob Ruess
Christian Schilling
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-23401-4_8

Premium Partner