Skip to main content
Erschienen in: Acta Mechanica 12/2020

08.09.2020 | Original Paper

Adiabatic invariants for disturbed fractional Hamiltonian system in terms of Herglotz differential variational principle

verfasst von: Xin-Xin Xu, Yi Zhang

Erschienen in: Acta Mechanica | Ausgabe 12/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the differential variational principle of Herglotz type, we reveal the internal relation between the perturbation and the adiabatic invariants for fractional Hamiltonian system with combined Caputo derivatives. First, based on the Herglotz variational problem, the Herglotz differential variational principle for fractional Hamiltonian systems is derived, and the fractional Hamilton canonical equations are given. Second, by introducing the infinitesimals, the transformation of the invariance condition of the Herglotz differential variational principle is established and an exact invariant of the system is derived. Third, the adiabatic invariants of Herglotz type for the disturbed fractional Hamiltonian system is obtained. Finally, the fractional linear damped oscillator of Herglotz type is discussed as an example to demonstrate the results.
Literatur
1.
Zurück zum Zitat Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Science Publishing, Singapore (2011)MATH Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Science Publishing, Singapore (2011)MATH
2.
Zurück zum Zitat Hilfer, R.: Applications of Fractional Calculus in Physics. World Science Publishing, River Edge (2000)MATH Hilfer, R.: Applications of Fractional Calculus in Physics. World Science Publishing, River Edge (2000)MATH
3.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
4.
Zurück zum Zitat Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006) Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)
5.
Zurück zum Zitat Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, Dordrecht (2007)MATH Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, Dordrecht (2007)MATH
6.
Zurück zum Zitat Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento. 1(2), 161–198 (1971) Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento. 1(2), 161–198 (1971)
7.
Zurück zum Zitat Baleanu, D., Agrawal, O.P.: Fractional hamilton formalism within caputos derivative. Czech. J. Phys. 56(10–11), 1087–1092 (2006)MathSciNet Baleanu, D., Agrawal, O.P.: Fractional hamilton formalism within caputos derivative. Czech. J. Phys. 56(10–11), 1087–1092 (2006)MathSciNet
8.
Zurück zum Zitat Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14(4), 523–537 (2011)MathSciNetMATH Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14(4), 523–537 (2011)MathSciNetMATH
9.
Zurück zum Zitat Malinowska, A.B., Torres, D.F.M.: Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218(9), 5099–5111 (2012)MathSciNetMATH Malinowska, A.B., Torres, D.F.M.: Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218(9), 5099–5111 (2012)MathSciNetMATH
10.
Zurück zum Zitat Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)MathSciNet Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)MathSciNet
11.
Zurück zum Zitat Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)MathSciNet Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)MathSciNet
12.
Zurück zum Zitat Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)MathSciNetMATH Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)MathSciNetMATH
13.
Zurück zum Zitat Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40(24), 6287–6303 (2007)MathSciNetMATH Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40(24), 6287–6303 (2007)MathSciNetMATH
14.
Zurück zum Zitat Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2003) Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2003)
15.
Zurück zum Zitat Baleanu, D., Trujillo, J.I.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. 15(5), 1111–1115 (2010)MathSciNetMATH Baleanu, D., Trujillo, J.I.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. 15(5), 1111–1115 (2010)MathSciNetMATH
16.
Zurück zum Zitat El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)MathSciNet El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)MathSciNet
17.
Zurück zum Zitat El-Nabulsi, A.R.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217(22), 9492–9496 (2011)MathSciNetMATH El-Nabulsi, A.R.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217(22), 9492–9496 (2011)MathSciNetMATH
18.
Zurück zum Zitat Frederico, G.S.F., Torres, D.F.M.: A formulation of Noethers theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)MathSciNetMATH Frederico, G.S.F., Torres, D.F.M.: A formulation of Noethers theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)MathSciNetMATH
19.
Zurück zum Zitat Frederico, G.S.F., Torres, D.F.M.: Fractional isoperimetric Noethers theorem in the Riemann-Liouville sense. Rep. Math. Phys. 71(3), 291–304 (2013)MathSciNetMATH Frederico, G.S.F., Torres, D.F.M.: Fractional isoperimetric Noethers theorem in the Riemann-Liouville sense. Rep. Math. Phys. 71(3), 291–304 (2013)MathSciNetMATH
20.
Zurück zum Zitat Malinowska, A.B.: A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 25(11), 1941–1946 (2012)MathSciNetMATH Malinowska, A.B.: A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 25(11), 1941–1946 (2012)MathSciNetMATH
21.
Zurück zum Zitat Atanackovć, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: Invariance conditions and Noethers theorem. Nonlinear Anal. Theor. 71(5–6), 1504–1517 (2009)MathSciNetMATH Atanackovć, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: Invariance conditions and Noethers theorem. Nonlinear Anal. Theor. 71(5–6), 1504–1517 (2009)MathSciNetMATH
22.
Zurück zum Zitat Zhou, S., Fu, H., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractionalderivatives. Sci. China. Phys. Mech 54(10), 1847–1853 (2011) Zhou, S., Fu, H., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractionalderivatives. Sci. China. Phys. Mech 54(10), 1847–1853 (2011)
23.
Zurück zum Zitat Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81(1–2), 469–480 (2015)MathSciNetMATH Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81(1–2), 469–480 (2015)MathSciNetMATH
24.
Zurück zum Zitat Tian, X., Zhang, Y.: Noethers theorem for fractional Herglotz variational principle in phase space. Chaos Soliton. Fract. 119, 50–54 (2019)MathSciNet Tian, X., Zhang, Y.: Noethers theorem for fractional Herglotz variational principle in phase space. Chaos Soliton. Fract. 119, 50–54 (2019)MathSciNet
25.
Zurück zum Zitat Tian, X., Zhang, Y.: Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of herglotz variational problem. Commun. Theor. Phys. 70(03), 280–288 (2018)MathSciNet Tian, X., Zhang, Y.: Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of herglotz variational problem. Commun. Theor. Phys. 70(03), 280–288 (2018)MathSciNet
26.
Zurück zum Zitat Herglotz, G.: Ber\(\ddot{u}\)hrungstransformationen. Lectures at the University of G\(\ddot{o}\)ttingen, G\(\ddot{o}\)ttingen (1930) Herglotz, G.: Ber\(\ddot{u}\)hrungstransformationen. Lectures at the University of G\(\ddot{o}\)ttingen, G\(\ddot{o}\)ttingen (1930)
27.
Zurück zum Zitat Georgieva, B.: Symmetries of the Herglotz variational principle in the case of one independent variable. Ann. Sofia Univ. Fac. Math. Inf. 100, 113–122 (2010)MathSciNet Georgieva, B.: Symmetries of the Herglotz variational principle in the case of one independent variable. Ann. Sofia Univ. Fac. Math. Inf. 100, 113–122 (2010)MathSciNet
28.
Zurück zum Zitat Santos, S.P.S., Martins, N., Torres, D.F.M.: Higher-order variational problems of Herglotz type. Vietnam J. Math. 42(4), 409–419 (2014)MathSciNetMATH Santos, S.P.S., Martins, N., Torres, D.F.M.: Higher-order variational problems of Herglotz type. Vietnam J. Math. 42(4), 409–419 (2014)MathSciNetMATH
29.
Zurück zum Zitat Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20(2), 261–273 (2002)MathSciNetMATH Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20(2), 261–273 (2002)MathSciNetMATH
30.
Zurück zum Zitat Zhang, Y.: Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech. 228(4), 1481–1492 (2017)MathSciNetMATH Zhang, Y.: Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech. 228(4), 1481–1492 (2017)MathSciNetMATH
31.
Zurück zum Zitat Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229, 3601–3611 (2018)MathSciNetMATH Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229, 3601–3611 (2018)MathSciNetMATH
32.
Zurück zum Zitat Santos, S.P.S., Martins, N., Torres, D.F.M.: Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem. Discrete Contin. Dyn. Syst. 35(9), 4593–4610 (2015)MathSciNetMATH Santos, S.P.S., Martins, N., Torres, D.F.M.: Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem. Discrete Contin. Dyn. Syst. 35(9), 4593–4610 (2015)MathSciNetMATH
33.
Zurück zum Zitat Zhang, Y.: On the conservation law for nonconservative system in phase space based on Herglotz differential variational principle. Chin. Q. Mech. 39(4), 681–688 (2018). (in Chinese) Zhang, Y.: On the conservation law for nonconservative system in phase space based on Herglotz differential variational principle. Chin. Q. Mech. 39(4), 681–688 (2018). (in Chinese)
34.
Zurück zum Zitat Zhang, Y.: Recent advances on Herglotzs generalized variational principle of nonconservative dynamics. Trans. Nanjing Univ. Aeronaut. Astronaut. 37(1), 13–26 (2020). (in Chinese)MATH Zhang, Y.: Recent advances on Herglotzs generalized variational principle of nonconservative dynamics. Trans. Nanjing Univ. Aeronaut. Astronaut. 37(1), 13–26 (2020). (in Chinese)MATH
35.
Zurück zum Zitat Almeida, A.R., Malinowska, A.B.: Fractional variational principle of Herglotz. Dis. Contin. Dyn. Syst. 19(8), 2367–2381 (2014)MathSciNetMATH Almeida, A.R., Malinowska, A.B.: Fractional variational principle of Herglotz. Dis. Contin. Dyn. Syst. 19(8), 2367–2381 (2014)MathSciNetMATH
36.
Zurück zum Zitat Almeida, A.R.: Variational problems involving a Caputo-type fractional derivative. J. Optimiz. Theory App. 174(1), 276–294 (2017)MathSciNetMATH Almeida, A.R.: Variational problems involving a Caputo-type fractional derivative. J. Optimiz. Theory App. 174(1), 276–294 (2017)MathSciNetMATH
37.
Zurück zum Zitat Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Soliton. Fract. 102, 94–98 (2017)MathSciNetMATH Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Soliton. Fract. 102, 94–98 (2017)MathSciNetMATH
38.
Zurück zum Zitat Burgers, J.M.: Adiabatic invariants for non-simple harmonic vibration systems. Ann. Phys. 357, 195–202 (1917) Burgers, J.M.: Adiabatic invariants for non-simple harmonic vibration systems. Ann. Phys. 357, 195–202 (1917)
39.
Zurück zum Zitat Zhao, Y.Y., Mei, F.X.: Exact invariant and adiabatic invariant of a general dynamical system. Acta Mech. Sin. 28(2), 207–216 (1996). (in Chinese)MathSciNet Zhao, Y.Y., Mei, F.X.: Exact invariant and adiabatic invariant of a general dynamical system. Acta Mech. Sin. 28(2), 207–216 (1996). (in Chinese)MathSciNet
40.
Zurück zum Zitat Chen, X.W., Li, Y.M., Zhao, Y,H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337(4), 274–278 (2007)MathSciNetMATH Chen, X.W., Li, Y.M., Zhao, Y,H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337(4), 274–278 (2007)MathSciNetMATH
41.
Zurück zum Zitat Jiang, W., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dynam. 67(1), 475–482 (2012)MathSciNetMATH Jiang, W., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dynam. 67(1), 475–482 (2012)MathSciNetMATH
42.
Zurück zum Zitat Zhang, K.J., Fang, J.H., Li, Y.: Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system. Chin. Phys. B 49(5), 305–309 (2011) Zhang, K.J., Fang, J.H., Li, Y.: Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system. Chin. Phys. B 49(5), 305–309 (2011)
43.
Zurück zum Zitat Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dynam. 68(1–2), 53–62 (2012)MathSciNetMATH Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dynam. 68(1–2), 53–62 (2012)MathSciNetMATH
44.
Zurück zum Zitat Song, C.J., Zhang, Y.: Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. Int. J. Non-Linear Mech. 90, 32–38 (2017) Song, C.J., Zhang, Y.: Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. Int. J. Non-Linear Mech. 90, 32–38 (2017)
45.
Zurück zum Zitat Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 105, 165–172 (2018) Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 105, 165–172 (2018)
46.
Zurück zum Zitat Xu, X.X., Zhang, Y.: A new type of adiabatic invariants for disturbed non-conservative nonholonomic system. Chin. Phys. B 28(12), 122–126 (2019) Xu, X.X., Zhang, Y.: A new type of adiabatic invariants for disturbed non-conservative nonholonomic system. Chin. Phys. B 28(12), 122–126 (2019)
47.
Zurück zum Zitat Xu, X.X., Zhang, Y.: A new type of adiabatic invariants for disturbed Birkhoffian system of Herglotz type. Chin. J. Phys. 64, 278–286 (2020)MathSciNet Xu, X.X., Zhang, Y.: A new type of adiabatic invariants for disturbed Birkhoffian system of Herglotz type. Chin. J. Phys. 64, 278–286 (2020)MathSciNet
48.
Zurück zum Zitat Zhang, Y.: Fractional Hamiltonian mechanics and fractional canonical transformations in terms of a combined Caputo derivative. J. Suzhou Univ. Sci. Technol. 31(1), 1–9 (2014). (in Chinese)MathSciNetMATH Zhang, Y.: Fractional Hamiltonian mechanics and fractional canonical transformations in terms of a combined Caputo derivative. J. Suzhou Univ. Sci. Technol. 31(1), 1–9 (2014). (in Chinese)MathSciNetMATH
Metadaten
Titel
Adiabatic invariants for disturbed fractional Hamiltonian system in terms of Herglotz differential variational principle
verfasst von
Xin-Xin Xu
Yi Zhang
Publikationsdatum
08.09.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02796-3

Weitere Artikel der Ausgabe 12/2020

Acta Mechanica 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.