Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Advances in Synthesis of Metal Nanocrystals

verfasst von : P. John Thomas, Oliver L. Armstrong, Sean N. Baxter

Erschienen in: Metal Nanoparticles and Clusters

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a short overview of synthetic routes to nanostructured metals of various shapes, compositions and sizes with an emphasis on topical methods. No attempt has however been made to be comprehensive. Instead, a short overview with detailed highlights of particular reagents and certain schemes is provided. It is hoped that such a structure would enable the reader to get to grips with the twists and turn of a few specific methods as well provide an at a glance summary of the myriad synthetic schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. A Eur. J. 8(1), 28–35 (2002) C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. A Eur. J. 8(1), 28–35 (2002)
2.
Zurück zum Zitat M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293–346 (2004) M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293–346 (2004)
3.
Zurück zum Zitat C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005) C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005)
4.
Zurück zum Zitat J. Scholl, A.L. Koh, J. Dionne, Nature 483, 421–427 (2012) J. Scholl, A.L. Koh, J. Dionne, Nature 483, 421–427 (2012)
5.
Zurück zum Zitat E. Roduner, Chem. Soc. Rev. 35, 583–592 (2006) E. Roduner, Chem. Soc. Rev. 35, 583–592 (2006)
6.
Zurück zum Zitat Y. Lu, W. Chen, Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41(9), 3594–3623 (2012) Y. Lu, W. Chen, Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41(9), 3594–3623 (2012)
7.
Zurück zum Zitat R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev 116(18), 10346–10413 (2016) R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev 116(18), 10346–10413 (2016)
8.
Zurück zum Zitat I. Chakraborty, T. Pradeep, Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017) I. Chakraborty, T. Pradeep, Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017)
9.
Zurück zum Zitat S.P. Bhaskar, B.R. Jagirdar, J. Chem. Sci. 124, 1175–1180 (2012) S.P. Bhaskar, B.R. Jagirdar, J. Chem. Sci. 124, 1175–1180 (2012)
10.
Zurück zum Zitat D.S. Sidhaye, B.L.V. Prasad, New J. Chem. 35, 755–763 (2011) D.S. Sidhaye, B.L.V. Prasad, New J. Chem. 35, 755–763 (2011)
11.
Zurück zum Zitat B.L.V. Prasad, C.M. Sorensen, K.J. Klabunde, Chem. Soc. Rev. 37, 1871–1883 (2008) B.L.V. Prasad, C.M. Sorensen, K.J. Klabunde, Chem. Soc. Rev. 37, 1871–1883 (2008)
12.
Zurück zum Zitat J. Lai, W. Niu, R. Luque, G. Xu, Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015) J. Lai, W. Niu, R. Luque, G. Xu, Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015)
13.
Zurück zum Zitat A.K. Ganguli, A. Ganguly, S. Vaidya, Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39(2), 474–485 (2010) A.K. Ganguli, A. Ganguly, S. Vaidya, Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39(2), 474–485 (2010)
14.
Zurück zum Zitat M.-P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2(3), 145 (2003) M.-P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2(3), 145 (2003)
15.
Zurück zum Zitat J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951) J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951)
16.
Zurück zum Zitat T. Ahmad, Reviewing the tannic acid mediated synthesis of metal nanoparticles. J. Nanotechnol. 2014, 954206 (2014) T. Ahmad, Reviewing the tannic acid mediated synthesis of metal nanoparticles. J. Nanotechnol. 2014, 954206 (2014)
17.
Zurück zum Zitat E.A. Hauser, J.E. Lynn, Experiments in Colloid Chemistry (McGraw-Hill, New York/London, 1940) E.A. Hauser, J.E. Lynn, Experiments in Colloid Chemistry (McGraw-Hill, New York/London, 1940)
18.
Zurück zum Zitat G. Frens, Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20 (1973) G. Frens, Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20 (1973)
19.
Zurück zum Zitat D.N. Furlong, A. Launikonis, W.H.F. Sasse, J.V. Sanders, Colloidal platinum sols. preparation, characterization and stability towards salt. J. Chem. Soc. Faraday Trans. 1 80, 571 (1984) D.N. Furlong, A. Launikonis, W.H.F. Sasse, J.V. Sanders, Colloidal platinum sols. preparation, characterization and stability towards salt. J. Chem. Soc. Faraday Trans. 1 80, 571 (1984)
20.
Zurück zum Zitat A. Harriman, G.R. Millward, P. Neta, M.C. Richoux, J.M. Thomas, Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution. J. Phys. Chem. 92(5), 1286–1290 (1988) A. Harriman, G.R. Millward, P. Neta, M.C. Richoux, J.M. Thomas, Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution. J. Phys. Chem. 92(5), 1286–1290 (1988)
21.
Zurück zum Zitat R.S. Miner, S. Namba, J. Turkevich, in Proceedings of the 7th International Congress on Catalysis, Kodansha, 1981 R.S. Miner, S. Namba, J. Turkevich, in Proceedings of the 7th International Congress on Catalysis, Kodansha, 1981
22.
Zurück zum Zitat X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007) X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007)
23.
Zurück zum Zitat J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110(32), 15700–15707 (2006) J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110(32), 15700–15707 (2006)
24.
Zurück zum Zitat F. Schulz, T. Homolka, N.G. Bastús, V. Puntes, H. Weller, T. Vossmeyer, Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir 30, 10779 (2014) F. Schulz, T. Homolka, N.G. Bastús, V. Puntes, H. Weller, T. Vossmeyer, Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir 30, 10779 (2014)
25.
Zurück zum Zitat I. Ojea-Jimenez, F.M. Romero, N.G. Bastus, V. Puntes, Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C 114, 1800–1804 (2010) I. Ojea-Jimenez, F.M. Romero, N.G. Bastus, V. Puntes, Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C 114, 1800–1804 (2010)
26.
Zurück zum Zitat S.K. Sivaraman, S. Kumar, V. Santhanam, Monodisperse sub10 nm gold nanoparticles by reversing the order of addition in Turkevich method – the role of chloroauric acid. J. Coll. Inter. Sci. 361, 543–547 (2011) S.K. Sivaraman, S. Kumar, V. Santhanam, Monodisperse sub10 nm gold nanoparticles by reversing the order of addition in Turkevich method – the role of chloroauric acid. J. Coll. Inter. Sci. 361, 543–547 (2011)
27.
Zurück zum Zitat J. Piella, N.G. Bastús, V. Puntes, Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28(4), 1066–1075 (2016) J. Piella, N.G. Bastús, V. Puntes, Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28(4), 1066–1075 (2016)
28.
Zurück zum Zitat N.G. Bastus, E. Sanchez-Tillo, S. Pujals, C. Farrera, C. Lopez, E. Giralt, A. Celada, J. Lloberas, V. Puntes, Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3, 1335–1344 (2009) N.G. Bastus, E. Sanchez-Tillo, S. Pujals, C. Farrera, C. Lopez, E. Giralt, A. Celada, J. Lloberas, V. Puntes, Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3, 1335–1344 (2009)
29.
Zurück zum Zitat G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles. Langmuir 9(1), 162–169 (1993) G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles. Langmuir 9(1), 162–169 (1993)
30.
Zurück zum Zitat G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Sodium borohydride reduction of cobalt ions in nonaqueous media. formation of ultrafine particles (nanoscale) of cobalt metal. Inorg. Chem. 32(4), 474–477 (1993) G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Sodium borohydride reduction of cobalt ions in nonaqueous media. formation of ultrafine particles (nanoscale) of cobalt metal. Inorg. Chem. 32(4), 474–477 (1993)
31.
Zurück zum Zitat H. Bönnemann, W. Brijoux, R. Brinkmann, T. Joußen, B. Korall, E. Dinjus, Formation of colloidal transition metals in organic phases and their application in catalysis. Angew. Chem. Int. Ed. 30(10), 1312–1314 (1991) H. Bönnemann, W. Brijoux, R. Brinkmann, T. Joußen, B. Korall, E. Dinjus, Formation of colloidal transition metals in organic phases and their application in catalysis. Angew. Chem. Int. Ed. 30(10), 1312–1314 (1991)
32.
Zurück zum Zitat H. Bo, W. Brijoux, R. Brinkmann, E. Dinjus, R. Fretzen, T. Joußen, B. Korall, et al., Highly dispersed metal clusters and colloids for the preparation of active liquid-phase hydrogenation catalysts. J. Mol. catal. 74(1–3), 323–333 (1992) H. Bo, W. Brijoux, R. Brinkmann, E. Dinjus, R. Fretzen, T. Joußen, B. Korall, et al., Highly dispersed metal clusters and colloids for the preparation of active liquid-phase hydrogenation catalysts. J. Mol. catal. 74(1–3), 323–333 (1992)
33.
Zurück zum Zitat J. Belloni, M. Mostafavi, Radiation-induced metal clusters. Nucleation mechanism and chemistry, in Metal Clusters in Chemistry, vol. 3, ed. by P. Braunstein, L.A. Oro, P.R. Raithby (Wiley, Weinheim, 1999), pp. 1213–1244 J. Belloni, M. Mostafavi, Radiation-induced metal clusters. Nucleation mechanism and chemistry, in Metal Clusters in Chemistry, vol. 3, ed. by P. Braunstein, L.A. Oro, P.R. Raithby (Wiley, Weinheim, 1999), pp. 1213–1244
34.
Zurück zum Zitat J. Belloni, Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today 113(3), 141–156 (2006) J. Belloni, Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today 113(3), 141–156 (2006)
35.
Zurück zum Zitat M.Y. Han, L. Zhou, C.H. Quek, S.F.Y. Li, W. Huang, Room temperature coulomb staircase on pure and uniform surface-capped gold nanoparticles. Chem. Phys. Lett. 287(1), 47–52 (1998) M.Y. Han, L. Zhou, C.H. Quek, S.F.Y. Li, W. Huang, Room temperature coulomb staircase on pure and uniform surface-capped gold nanoparticles. Chem. Phys. Lett. 287(1), 47–52 (1998)
36.
Zurück zum Zitat Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108(3), 945–951 (2004) Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108(3), 945–951 (2004)
37.
Zurück zum Zitat K. Soulantica, A. Maisonnat, F. Senocq, M.-C. Fromen, M.-J. Casanove, B. Chaudret, Angew. Chem. Int. Ed. 40, 2984 (2001) K. Soulantica, A. Maisonnat, F. Senocq, M.-C. Fromen, M.-J. Casanove, B. Chaudret, Angew. Chem. Int. Ed. 40, 2984 (2001)
38.
Zurück zum Zitat R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548), 1901–1903 (2001) R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548), 1901–1903 (2001)
39.
Zurück zum Zitat S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14(6), 567 (2015) S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14(6), 567 (2015)
40.
Zurück zum Zitat R. Jin, Y.C. Cao, E. Hao, G.S. Matraux et al., Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957), 487 (2003) R. Jin, Y.C. Cao, E. Hao, G.S. Matraux et al., Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957), 487 (2003)
41.
Zurück zum Zitat C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005) C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)
42.
Zurück zum Zitat A. Abedini, A.A.A Bakar, F. Larki, P.S. Menon, M.S. Islam, S. Shaari, Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res. Lett. 11(1), 287 (2016) A. Abedini, A.A.A Bakar, F. Larki, P.S. Menon, M.S. Islam, S. Shaari, Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res. Lett. 11(1), 287 (2016)
43.
Zurück zum Zitat A. Hoffman, The action of hydrogen phosphide on formaldehyde. J. Am. Chem. Soc. 43(7), 1684–1688 (1921) A. Hoffman, The action of hydrogen phosphide on formaldehyde. J. Am. Chem. Soc. 43(7), 1684–1688 (1921)
44.
Zurück zum Zitat A. Hoffman, The action of hydrogen phosphide on formaldehyde. II. J. Am. Chem. Soc. 52(7), 2995–2998 (1930) A. Hoffman, The action of hydrogen phosphide on formaldehyde. II. J. Am. Chem. Soc. 52(7), 2995–2998 (1930)
45.
Zurück zum Zitat W.J. Vullo, Studies concerning the neutralization of tetrakis (hydroxymethyl) phosphonium chloride and the reaction of tris (hydroxymethyl) phosphine with formaldehyde. J. Org. Chem. V(9), 9–11 (1968) W.J. Vullo, Studies concerning the neutralization of tetrakis (hydroxymethyl) phosphonium chloride and the reaction of tris (hydroxymethyl) phosphine with formaldehyde. J. Org. Chem. V(9), 9–11 (1968)
46.
Zurück zum Zitat W.A. Reeves, J.D. Guthrie, Intermediate for flame-resistant polymers – reactions of tetrakis(hydroxymethyl)phosphonium chloride. Ind. Eng. Chem. 48(1), 64–67 (1956) W.A. Reeves, J.D. Guthrie, Intermediate for flame-resistant polymers – reactions of tetrakis(hydroxymethyl)phosphonium chloride. Ind. Eng. Chem. 48(1), 64–67 (1956)
47.
Zurück zum Zitat D.G. Duff, A. Baiker, P.P. Edwards, A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9(9), 2301–2309 (1993) D.G. Duff, A. Baiker, P.P. Edwards, A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9(9), 2301–2309 (1993)
48.
Zurück zum Zitat M. Faraday, The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857) M. Faraday, The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857)
49.
Zurück zum Zitat D.G. Duff, A. Baiker, P.P. Edwards, A new hydrosol of gold clusters. J. Chem. Soc. Chem. Commun. 272(1), 96 (1993) D.G. Duff, A. Baiker, P.P. Edwards, A new hydrosol of gold clusters. J. Chem. Soc. Chem. Commun. 272(1), 96 (1993)
50.
Zurück zum Zitat W.W. Bryan, A.C. Jamison, P. Chinwangso, S. Rittikulsittichai, T.-C. Lee, T R Lee, Preparation of THPC-generated silver, platinum, and palladium nanoparticles and their use in the synthesis of Ag, Pt, Pd, and Pt/Ag nanoshells. RSC Adv. 6(72), 68150–68159 (2016) W.W. Bryan, A.C. Jamison, P. Chinwangso, S. Rittikulsittichai, T.-C. Lee, T R Lee, Preparation of THPC-generated silver, platinum, and palladium nanoparticles and their use in the synthesis of Ag, Pt, Pd, and Pt/Ag nanoshells. RSC Adv. 6(72), 68150–68159 (2016)
51.
Zurück zum Zitat P.J. Thomas, G.U. Kulkarni, C.N.R. Rao, Dip-pen lithography using aqueous metal nanocrystal dispersions. J. Mater. Chem., 14, 625–628 (2004) P.J. Thomas, G.U. Kulkarni, C.N.R. Rao, Dip-pen lithography using aqueous metal nanocrystal dispersions. J. Mater. Chem., 14, 625–628 (2004)
52.
Zurück zum Zitat J.L. Hueso, V. Sebastián, Á. Mayoral, L. Usón, M. Arruebo, J. Santamaría, Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Adv. 3(26), 10427 (2013) J.L. Hueso, V. Sebastián, Á. Mayoral, L. Usón, M. Arruebo, J. Santamaría, Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Adv. 3(26), 10427 (2013)
53.
Zurück zum Zitat M.K. Sanyal, V.V. Agrawal, M.K. Bera, K.P. Kalyanikutty, J. Daillant, C. Blot, S. Kubowicz, O. Konovalov, C.N.R. Rao, Formation and ordering of gold nanoparticles at the toluene–water interface. J. Phys. Chem. C 112(6), 1739–1743 (2008) M.K. Sanyal, V.V. Agrawal, M.K. Bera, K.P. Kalyanikutty, J. Daillant, C. Blot, S. Kubowicz, O. Konovalov, C.N.R. Rao, Formation and ordering of gold nanoparticles at the toluene–water interface. J. Phys. Chem. C 112(6), 1739–1743 (2008)
54.
Zurück zum Zitat D. Li, Z. Chen, Z. Wan, T. Yang, H. Wang, X. Mei, One-pot development of water soluble copper nanoclusters with red emission and aggregation induced fluorescence enhancement. RSC Adv. 6(41), 34090–34095 (2016) D. Li, Z. Chen, Z. Wan, T. Yang, H. Wang, X. Mei, One-pot development of water soluble copper nanoclusters with red emission and aggregation induced fluorescence enhancement. RSC Adv. 6(41), 34090–34095 (2016)
55.
Zurück zum Zitat G. Hofmann, G. Tofighi, G. Rinke, S. Baier, A. Ewinger, A. Urban, A. Wenka, S. Heideker, A. Jahn, R. Dittmeyer, J.-D. Grunwaldt, A microfluidic device for the investigation of rapid gold nanoparticle formation in continuous turbulent flow. J. Phys. Conf. Ser. 712, 012072 (2016) G. Hofmann, G. Tofighi, G. Rinke, S. Baier, A. Ewinger, A. Urban, A. Wenka, S. Heideker, A. Jahn, R. Dittmeyer, J.-D. Grunwaldt, A microfluidic device for the investigation of rapid gold nanoparticle formation in continuous turbulent flow. J. Phys. Conf. Ser. 712, 012072 (2016)
56.
Zurück zum Zitat L. Usón, V. Sebastian, A. Mayoral, J.L. Hueso, A. Eguizabal, M. Arruebo, J. Santamaria, Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Nanoscale 7(22), 10152–10161 (2015) L. Usón, V. Sebastian, A. Mayoral, J.L. Hueso, A. Eguizabal, M. Arruebo, J. Santamaria, Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Nanoscale 7(22), 10152–10161 (2015)
57.
Zurück zum Zitat G.L. Stansfield, P.V. Vanitha, H.M. Johnston, D. Fan, H. AlQahtani, L. Hague, M. Grell, P.J. Thomas, Growth of nanocrystals and thin films at the water-oil interface. Philos. Trans. A. Math. Phys. Eng. Sci. 368(1927), 4313–30 (2010) G.L. Stansfield, P.V. Vanitha, H.M. Johnston, D. Fan, H. AlQahtani, L. Hague, M. Grell, P.J. Thomas, Growth of nanocrystals and thin films at the water-oil interface. Philos. Trans. A. Math. Phys. Eng. Sci. 368(1927), 4313–30 (2010)
58.
Zurück zum Zitat C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, V.V. Agrawal, P. Saravanan, Films of metal nanocrystals formed at aqueous–organic interfaces. J. Phys. Chem. B 107(30), 7391–7395 (2003) C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, V.V. Agrawal, P. Saravanan, Films of metal nanocrystals formed at aqueous–organic interfaces. J. Phys. Chem. B 107(30), 7391–7395 (2003)
59.
Zurück zum Zitat P.J. Thomas, E. Mbufu, P. O’Brien, Thin films of metals, metal chalcogenides and oxides deposited at the water–oil interface using molecular precursors. Chem. Commun. 49(2), 118–127 (2013) P.J. Thomas, E. Mbufu, P. O’Brien, Thin films of metals, metal chalcogenides and oxides deposited at the water–oil interface using molecular precursors. Chem. Commun. 49(2), 118–127 (2013)
60.
Zurück zum Zitat D.G. Duff, A. Baiker, I. Gameson, P.P. Edwards, A new hydrosol of gold clusters. 2. A comparison of some different measurement techniques. Langmuir 9(9), 2310–2317 (1993) D.G. Duff, A. Baiker, I. Gameson, P.P. Edwards, A new hydrosol of gold clusters. 2. A comparison of some different measurement techniques. Langmuir 9(9), 2310–2317 (1993)
61.
Zurück zum Zitat V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Nature and properties of ultrathin nanocrystalline gold films formed at the organic–aqueous interface. J. Phys. Chem. B 109(15), 7300–7305 (2005) V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Nature and properties of ultrathin nanocrystalline gold films formed at the organic–aqueous interface. J. Phys. Chem. B 109(15), 7300–7305 (2005)
62.
Zurück zum Zitat C.N.R. Rao, K.P. Kalyanikutty, The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41(4), 489–499 (2008) C.N.R. Rao, K.P. Kalyanikutty, The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41(4), 489–499 (2008)
63.
Zurück zum Zitat R. Krishnaswamy, S. Majumdar, R. Ganapathy, V.V. Agrawal, A.K. Sood, C.N.R. Rao, Interfacial rheology of an ultrathin nanocrystalline film formed at the liquid/liquid interface. Langmuir 23(6), 3084–3087 (2007) R. Krishnaswamy, S. Majumdar, R. Ganapathy, V.V. Agrawal, A.K. Sood, C.N.R. Rao, Interfacial rheology of an ultrathin nanocrystalline film formed at the liquid/liquid interface. Langmuir 23(6), 3084–3087 (2007)
64.
Zurück zum Zitat V.V. Agrawal, P. Mahalakshmi, G.U. Kulkarni, C.N.R. Rao, Nanocrystalline films of Au–Ag, Au–Cu, and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22(4), 1846–1851 (2006) V.V. Agrawal, P. Mahalakshmi, G.U. Kulkarni, C.N.R. Rao, Nanocrystalline films of Au–Ag, Au–Cu, and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22(4), 1846–1851 (2006)
65.
Zurück zum Zitat M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994) M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994)
66.
Zurück zum Zitat M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A Physicochem. Eng. Asp. 202(2), 175–186 (2002) M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A Physicochem. Eng. Asp. 202(2), 175–186 (2002)
67.
Zurück zum Zitat P. Huang, J. Lin, Z. Li, H. Hu, K. Wang, G. Gao, R. He, D. Cui, A general strategy for metallic nanocrystals synthesis in organic medium. Chem. Commun. 46(26), 4800–4802 (2010) P. Huang, J. Lin, Z. Li, H. Hu, K. Wang, G. Gao, R. He, D. Cui, A general strategy for metallic nanocrystals synthesis in organic medium. Chem. Commun. 46(26), 4800–4802 (2010)
68.
Zurück zum Zitat R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105(13), 4481–4483 (1983) R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105(13), 4481–4483 (1983)
69.
Zurück zum Zitat Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998) Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)
70.
Zurück zum Zitat R.W. Murray, M.J. Hostetler, J.J. Stokes, Langmuir 12, 3604 (1996) R.W. Murray, M.J. Hostetler, J.J. Stokes, Langmuir 12, 3604 (1996)
71.
Zurück zum Zitat J.R. Heath, C.M. Knobler, D.V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J. Phys. Chem. B 101(2), 189–197 (1997) J.R. Heath, C.M. Knobler, D.V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J. Phys. Chem. B 101(2), 189–197 (1997)
72.
Zurück zum Zitat B.A. Korgel, S. Fullam, S. Connolly, D. Fitzmaurice, Assembly and self-organization of silver nanocrystal superlattices: ordered “soft spheres”. J. Phys. Chem. B 102(43), 8379–8388 (1998) B.A. Korgel, S. Fullam, S. Connolly, D. Fitzmaurice, Assembly and self-organization of silver nanocrystal superlattices: ordered “soft spheres”. J. Phys. Chem. B 102(43), 8379–8388 (1998)
73.
Zurück zum Zitat S. Chen, K. Huang, J.A. Stearns, Alkanethiolate-protected palladium nanoparticles. Chem. Mater. 12(2), 540–547 (2000) S. Chen, K. Huang, J.A. Stearns, Alkanethiolate-protected palladium nanoparticles. Chem. Mater. 12(2), 540–547 (2000)
74.
Zurück zum Zitat M. Green, Organometallic based strategies for metal nanocrystal synthesis. Chem. Commun. 2005, 3002–3011 (2005) M. Green, Organometallic based strategies for metal nanocrystal synthesis. Chem. Commun. 2005, 3002–3011 (2005)
75.
Zurück zum Zitat M.P. Pileni, Adv. Funct. Mater. 11, 323 (2001) M.P. Pileni, Adv. Funct. Mater. 11, 323 (2001)
76.
Zurück zum Zitat E. Papirer, P. Horny, H. Balard, R. Anthore, C. Petipas, A. Martinet, J. Colloid Interface Sci. 94, 220 (1983) E. Papirer, P. Horny, H. Balard, R. Anthore, C. Petipas, A. Martinet, J. Colloid Interface Sci. 94, 220 (1983)
77.
Zurück zum Zitat J. Hambrock, R. Becker, A. Birkner, J. Weiss, R.A. Fischer, Chem. Commun. 68 (2002) J. Hambrock, R. Becker, A. Birkner, J. Weiss, R.A. Fischer, Chem. Commun. 68 (2002)
78.
79.
Zurück zum Zitat V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291, 2115 (2001)CrossRef V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291, 2115 (2001)CrossRef
80.
Zurück zum Zitat J. Park, K. An, Y. Hwang, J.-G. Park, N. Han-Jin, K. Jae-Young, J.-H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891 (2004) J. Park, K. An, Y. Hwang, J.-G. Park, N. Han-Jin, K. Jae-Young, J.-H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891 (2004)
81.
Zurück zum Zitat J. Park, J. Joo, S. Gu Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660, (2007)CrossRef J. Park, J. Joo, S. Gu Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660, (2007)CrossRef
82.
83.
Zurück zum Zitat S. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85(8), 4325–4330 (1999)CrossRef S. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85(8), 4325–4330 (1999)CrossRef
84.
Zurück zum Zitat I. Pastoriza-Santos, L.M. Liz-Marzan, Pure Appl. Chem. 72(6957), 83–90 (2000) I. Pastoriza-Santos, L.M. Liz-Marzan, Pure Appl. Chem. 72(6957), 83–90 (2000)
85.
Zurück zum Zitat S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse fept nanoparticles and ferromagnetic fept nanocrystal superlattices. Science 287, 1989–1992 (1999)CrossRef S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse fept nanoparticles and ferromagnetic fept nanocrystal superlattices. Science 287, 1989–1992 (1999)CrossRef
86.
Zurück zum Zitat S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray, B.D. Terris, J. Phys. Chem. B 107, 5419 (2003)CrossRef S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray, B.D. Terris, J. Phys. Chem. B 107, 5419 (2003)CrossRef
87.
Zurück zum Zitat A.-H. Lu, E.L. Salabas, F. Schueth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Intl. Ed. 46(8), 1222–1244 (2007)CrossRef A.-H. Lu, E.L. Salabas, F. Schueth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Intl. Ed. 46(8), 1222–1244 (2007)CrossRef
88.
Zurück zum Zitat A. Tomou, I. Panagiotopoulos, V. Tzitzios, W. Li, G.C. Hadjipanayis, Chemical synthesis and L1(2) ordering of CrPt3 nanoparticles. J. Mag. Mag. Mater. 334, 107–110 (2013)CrossRef A. Tomou, I. Panagiotopoulos, V. Tzitzios, W. Li, G.C. Hadjipanayis, Chemical synthesis and L1(2) ordering of CrPt3 nanoparticles. J. Mag. Mag. Mater. 334, 107–110 (2013)CrossRef
89.
Zurück zum Zitat J. Tuaillon-Combes, E. Bernstein, O. Boisron, P. Melinon, Alloying effect in copt nanoparticles probed by x-ray photoemission spectroscopy: validity of the bulk phase diagram. J. Phys. Chem. C 114(31), 13168–13175 (2010)CrossRef J. Tuaillon-Combes, E. Bernstein, O. Boisron, P. Melinon, Alloying effect in copt nanoparticles probed by x-ray photoemission spectroscopy: validity of the bulk phase diagram. J. Phys. Chem. C 114(31), 13168–13175 (2010)CrossRef
90.
Zurück zum Zitat A.B. Smetana, K.J. Klabunde, C.M. Sorensen, A.A. Ponce, B. Mwale, J. Phys. Chem. B 110, 2155–2158 (2006)CrossRef A.B. Smetana, K.J. Klabunde, C.M. Sorensen, A.A. Ponce, B. Mwale, J. Phys. Chem. B 110, 2155–2158 (2006)CrossRef
91.
92.
Zurück zum Zitat J.R. Shimpi, D.S. Sidhaye, B.L.V. Prasad, Digestive ripening: a fine chemical machining process on the nanoscale. Langmuir 33, 9491–9507 null (2017) PMID:28562058 J.R. Shimpi, D.S. Sidhaye, B.L.V. Prasad, Digestive ripening: a fine chemical machining process on the nanoscale. Langmuir 33, 9491–9507 null (2017) PMID:28562058
94.
Zurück zum Zitat N.-M. Hwang, J.-S. Jung, D.-K. Lee, Thermodynamics and kinetics in the synthesis of monodisperse nanoparticles, in Thermodynamics – Fundamentals and Its Application in Science, ed. by R. Morales-Rodriguez (InTech, Rijeka, 2012) N.-M. Hwang, J.-S. Jung, D.-K. Lee, Thermodynamics and kinetics in the synthesis of monodisperse nanoparticles, in Thermodynamics – Fundamentals and Its Application in Science, ed. by R. Morales-Rodriguez (InTech, Rijeka, 2012)
95.
Zurück zum Zitat J.A. Manzanares, P. Peljo, H.H. Girault, Understanding digestive ripening of ligand-stabilized, charged metal nanoparticles. J. Phys. Chem. C 121(24), 13405–13411 (2017)CrossRef J.A. Manzanares, P. Peljo, H.H. Girault, Understanding digestive ripening of ligand-stabilized, charged metal nanoparticles. J. Phys. Chem. C 121(24), 13405–13411 (2017)CrossRef
96.
Zurück zum Zitat D.K. Lee, S.I. Park, J.K. Lee, N.M. Hwang, Acta Mater. 55, 5281–5288 (2007)CrossRef D.K. Lee, S.I. Park, J.K. Lee, N.M. Hwang, Acta Mater. 55, 5281–5288 (2007)CrossRef
97.
Zurück zum Zitat Y. Ji, S. Yang, S. Guo, X. Song, B. Ding, Z. Yang, Colloids Surf. A Physicochem. Eng. Asp. 372, 204–209 (2010)CrossRef Y. Ji, S. Yang, S. Guo, X. Song, B. Ding, Z. Yang, Colloids Surf. A Physicochem. Eng. Asp. 372, 204–209 (2010)CrossRef
98.
Zurück zum Zitat M.L. Lin, F. Yang, J.S. Peng, S. Lee, J. Appl. Phys. 115, 1–8 (2014) M.L. Lin, F. Yang, J.S. Peng, S. Lee, J. Appl. Phys. 115, 1–8 (2014)
99.
Zurück zum Zitat B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen, K.J. Klabunde, Chem. Mater. 15, 935–942 (2003)CrossRef B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen, K.J. Klabunde, Chem. Mater. 15, 935–942 (2003)CrossRef
100.
Zurück zum Zitat P. Sahu, J. Shimpi, H.J. Lee, T.R. Lee, B.L.V. Prasad, Langmuir, 33, 1943–1950 (2017)CrossRef P. Sahu, J. Shimpi, H.J. Lee, T.R. Lee, B.L.V. Prasad, Langmuir, 33, 1943–1950 (2017)CrossRef
101.
Zurück zum Zitat P. Sahu, B.L.V. Prasad, Chem. Phys. Lett. 525–526, 101–104 (2012)CrossRef P. Sahu, B.L.V. Prasad, Chem. Phys. Lett. 525–526, 101–104 (2012)CrossRef
102.
Zurück zum Zitat X.M. Lin, C.M. Sorensen, K.J. Klabunde, J. Nanoparticle Res. 2, 157–164 (2000)CrossRef X.M. Lin, C.M. Sorensen, K.J. Klabunde, J. Nanoparticle Res. 2, 157–164 (2000)CrossRef
103.
Zurück zum Zitat Y. Yang, X. Gong, H. Zeng, L. Zhang, X. Zhang, C. Zou, S. Huang, J. Phys. Chem. C 114, 256–264 (2010) Y. Yang, X. Gong, H. Zeng, L. Zhang, X. Zhang, C. Zou, S. Huang, J. Phys. Chem. C 114, 256–264 (2010)
104.
Zurück zum Zitat N.D. Burrows, A.M. Vartanian, N.S. Abadeer, E.M. Grzincic, L.M. Jacob, W. Lin, J. Li, J.M. Dennison, J.G. Hinman, C.J. Murphy, Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 7(4), 632–641 (2016)CrossRef N.D. Burrows, A.M. Vartanian, N.S. Abadeer, E.M. Grzincic, L.M. Jacob, W. Lin, J. Li, J.M. Dennison, J.G. Hinman, C.J. Murphy, Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 7(4), 632–641 (2016)CrossRef
105.
Zurück zum Zitat C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)CrossRef C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)CrossRef
106.
Zurück zum Zitat A. Ruditskiy, H.-C. Peng, Y. Xia, Shape-controlled metal nanocrystals for heterogeneous catalysis. Annu. Rev. Chem. Biomol. Eng. 7, 327–348 (2016)CrossRef A. Ruditskiy, H.-C. Peng, Y. Xia, Shape-controlled metal nanocrystals for heterogeneous catalysis. Annu. Rev. Chem. Biomol. Eng. 7, 327–348 (2016)CrossRef
107.
Zurück zum Zitat L. Zhang, W. Niu, G. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7(6), 586–605 (2012)CrossRef L. Zhang, W. Niu, G. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7(6), 586–605 (2012)CrossRef
108.
Zurück zum Zitat M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008)CrossRef M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008)CrossRef
109.
Zurück zum Zitat K. Park, M.-S. Hsiao, Y.-J. Yi, S. Izor, H. Koerner, A. Jawaid, R.A. Vaia, Highly concentrated seed-mediated synthesis of monodispersed gold nanorods. ACS Appl. Mater. Interfaces 9, 26363–26371 (2017)CrossRef K. Park, M.-S. Hsiao, Y.-J. Yi, S. Izor, H. Koerner, A. Jawaid, R.A. Vaia, Highly concentrated seed-mediated synthesis of monodispersed gold nanorods. ACS Appl. Mater. Interfaces 9, 26363–26371 (2017)CrossRef
110.
Zurück zum Zitat A. Klinkova, E.M. Larin, E. Prince, E.H. Sargent, E. Kumacheva, Large-scale synthesis of metal nanocrystals in aqueous suspensions. Chem. Mater. 28(9), 3196–3202 (2016)CrossRef A. Klinkova, E.M. Larin, E. Prince, E.H. Sargent, E. Kumacheva, Large-scale synthesis of metal nanocrystals in aqueous suspensions. Chem. Mater. 28(9), 3196–3202 (2016)CrossRef
111.
Zurück zum Zitat Q. Zhang, S.-J. Liu, S.-H. Yu, Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J. Mater. Chem. 19(2), 191–207 (2009)CrossRef Q. Zhang, S.-J. Liu, S.-H. Yu, Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J. Mater. Chem. 19(2), 191–207 (2009)CrossRef
112.
Zurück zum Zitat E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012)CrossRef E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012)CrossRef
113.
Zurück zum Zitat S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103(16), 3073–3077 (1999)CrossRef S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103(16), 3073–3077 (1999)CrossRef
114.
Zurück zum Zitat C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111(10), 3806–3819 (2007)CrossRef C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111(10), 3806–3819 (2007)CrossRef
115.
Zurück zum Zitat T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)CrossRef T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)CrossRef
116.
Zurück zum Zitat P. Liu, R. Qin, G. Fu, N. Zheng, Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 139(6), 2122–2131 (2017) PMID:28085260 P. Liu, R. Qin, G. Fu, N. Zheng, Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 139(6), 2122–2131 (2017) PMID:28085260
117.
Zurück zum Zitat X. Liu, Y. Jingwen, J. Luo, X. Duan, Y. Yao, T. Liu, The effect of growth temperature on tailoring the size and aspect ratio of gold nanorods. Langmuir 33, 7479–7485 (2017)CrossRef X. Liu, Y. Jingwen, J. Luo, X. Duan, Y. Yao, T. Liu, The effect of growth temperature on tailoring the size and aspect ratio of gold nanorods. Langmuir 33, 7479–7485 (2017)CrossRef
118.
Zurück zum Zitat R. Zsigmondy, Die keimmethode zur herstellung kolloider metallösungen bestimmter eigenschaften. Zeitschrift für anorganische und allgemeine Chemie, 99(1), 105–117 (1917)CrossRef R. Zsigmondy, Die keimmethode zur herstellung kolloider metallösungen bestimmter eigenschaften. Zeitschrift für anorganische und allgemeine Chemie, 99(1), 105–117 (1917)CrossRef
119.
Zurück zum Zitat V. Sudha, M.V. Sangaranarayanan, Underpotential deposition of metals: structural and thermodynamic considerations. J. Phys. Chem. B 106(10), 2699–2707 (2002)CrossRef V. Sudha, M.V. Sangaranarayanan, Underpotential deposition of metals: structural and thermodynamic considerations. J. Phys. Chem. B 106(10), 2699–2707 (2002)CrossRef
120.
Zurück zum Zitat Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y. Xia, Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 129(12), 3665–3675 (2007)CrossRef Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y. Xia, Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 129(12), 3665–3675 (2007)CrossRef
121.
122.
Zurück zum Zitat F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics 32–33, 198–205 (1989)CrossRef F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics 32–33, 198–205 (1989)CrossRef
123.
Zurück zum Zitat F. Bonet, K. Tekaia-Elhsissen, K.V. Sarathy, Bull. Mater. Sci. 23, 165–168 (2000)CrossRef F. Bonet, K. Tekaia-Elhsissen, K.V. Sarathy, Bull. Mater. Sci. 23, 165–168 (2000)CrossRef
124.
125.
Zurück zum Zitat R. Seshadri, C.N.R. Rao, Preparation of monodispersed, submicron gold particles. Mater. Res. Bull. 29(7), 795–799 (1994)CrossRef R. Seshadri, C.N.R. Rao, Preparation of monodispersed, submicron gold particles. Mater. Res. Bull. 29(7), 795–799 (1994)CrossRef
126.
Zurück zum Zitat P. Saravanan, T.A. Jose, P.J. Thomas, G.U. Kulkarni, Submicron particles of co, ni and co-ni alloys. Bull. Mater. Sci. 24(5), 515–521 (2001)CrossRef P. Saravanan, T.A. Jose, P.J. Thomas, G.U. Kulkarni, Submicron particles of co, ni and co-ni alloys. Bull. Mater. Sci. 24(5), 515–521 (2001)CrossRef
127.
Zurück zum Zitat Q.N. Luu, J.M. Doorn, M.T. Berry, C. Jiang, C. Lin, P.S. May, J. Colloid Interface Sci. 356, 151–158 (2011)CrossRef Q.N. Luu, J.M. Doorn, M.T. Berry, C. Jiang, C. Lin, P.S. May, J. Colloid Interface Sci. 356, 151–158 (2011)CrossRef
128.
Zurück zum Zitat Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 14, 4736–4745 (2002)CrossRef Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 14, 4736–4745 (2002)CrossRef
129.
Zurück zum Zitat S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y. Xia, Nano Lett. 8, 2077–2081 (2008)CrossRef S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y. Xia, Nano Lett. 8, 2077–2081 (2008)CrossRef
130.
Zurück zum Zitat H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, J. Nanoparticle Res. 14, 2077–2081 (2012)CrossRef H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, J. Nanoparticle Res. 14, 2077–2081 (2012)CrossRef
131.
Zurück zum Zitat Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955–960 (2003)CrossRef Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955–960 (2003)CrossRef
132.
133.
Zurück zum Zitat Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chemie Int. Ed. 48, 60–103 (2009)CrossRef Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chemie Int. Ed. 48, 60–103 (2009)CrossRef
134.
Zurück zum Zitat J. Jung, D. Seo, G. Park, S. Ryu, H. Song, J. Phys. Chem. C 114, 12529–12534 (2010) J. Jung, D. Seo, G. Park, S. Ryu, H. Song, J. Phys. Chem. C 114, 12529–12534 (2010)
135.
Zurück zum Zitat K. E. Korte, S.E. Skrabalak, Y. Xia, J. Mater. Chem. 18, 437–441 (2008) K. E. Korte, S.E. Skrabalak, Y. Xia, J. Mater. Chem. 18, 437–441 (2008)
136.
Zurück zum Zitat T. Cheng, Y. Zhang, W. Lai, Y. Chen, W. Huang, Chin. J. Chem. 33, 147–151 (2015)CrossRef T. Cheng, Y. Zhang, W. Lai, Y. Chen, W. Huang, Chin. J. Chem. 33, 147–151 (2015)CrossRef
137.
Zurück zum Zitat H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, J. Nanoparticle Res. 14, 887 (2012)CrossRef H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, J. Nanoparticle Res. 14, 887 (2012)CrossRef
138.
Zurück zum Zitat S. Coskun, B. Aksoy, H.E. Unalan, Cryst. Growth Des. 11, 4963–4969 (2011)CrossRef S. Coskun, B. Aksoy, H.E. Unalan, Cryst. Growth Des. 11, 4963–4969 (2011)CrossRef
140.
Zurück zum Zitat W.A. Saidi, H. Feng, K.A. Fichthorn, J. Phys. Chem. C 117, 1163–1171 (2013) W.A. Saidi, H. Feng, K.A. Fichthorn, J. Phys. Chem. C 117, 1163–1171 (2013)
141.
142.
Zurück zum Zitat B. Li, S. Ye, I. E. Stewart, S. Alvarez, B.J. Wiley, Nano Lett. 15, 6722–6726 (2015)CrossRef B. Li, S. Ye, I. E. Stewart, S. Alvarez, B.J. Wiley, Nano Lett. 15, 6722–6726 (2015)CrossRef
Metadaten
Titel
Advances in Synthesis of Metal Nanocrystals
verfasst von
P. John Thomas
Oliver L. Armstrong
Sean N. Baxter
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68053-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.