Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2011

01.01.2011 | Research Paper

Aerosol formation of Sea-Urchin-like nanostructures of carbon nanotubes on bimetallic nanocomposite particles

verfasst von: S. H. Kim, C. Wang, M. R. Zachariah

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the advantage of continuous production of pure carbon nanotubes (CNTs), a new simple aerosol process for the formation of CNTs was developed. A combination of conventional spray pyrolysis and thermal chemical vapor deposition enabled the formation unusual sea-urchin-like carbon nanostructures composed of multi-walled CNTs and metal composite nanoparticles. The CNTs formed were relatively untangled and uniform with a diameter of less than ~10 nm. The key to the formation of CNTs in this way was to create a substrate particle containing both a catalytic and non-catalytic component, which prevented coking. The density of the CNTs grown on the spherical metal nanoparticles could be controlled by perturbing the density of the metal catalysts (Fe) in the host non-catalytic metal particle matrix (Al). Mobility size measurement was identified as a useful technique to real-time characterization of either the catalytic formation of thin carbon layer or CNTs on the surface of the metal aerosol. These materials have shown unique properties in enhancing the thermal conductivity of fluids. Other potential advantages are that the as-produced material can be manipulated easily without the concern of high mobility of conventional nanowires, and then subsequently released at the desired time in an unagglomerated state.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ago H, Ohshima S, Uchida K, Yumura M (2001) Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles. J Phys Chem B 105(43):10453–10456CrossRef Ago H, Ohshima S, Uchida K, Yumura M (2001) Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles. J Phys Chem B 105(43):10453–10456CrossRef
Zurück zum Zitat Andrews R, Jacques D, Rao AM, Rantell T, Derbyshire F, Chen Y, Chen J, Haddon RC (1999) Nanotube composite carbon fibers. Appl Phys Lett 75(9):1329–1331CrossRef Andrews R, Jacques D, Rao AM, Rantell T, Derbyshire F, Chen Y, Chen J, Haddon RC (1999) Nanotube composite carbon fibers. Appl Phys Lett 75(9):1329–1331CrossRef
Zurück zum Zitat Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433CrossRef Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433CrossRef
Zurück zum Zitat Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef
Zurück zum Zitat Ci L, Li Y, Wei B, Liang J, Xu C, Wu D (2000) Preparation of carbon nanofibers by the floating catalyst method. Carbon 38:1933–1937CrossRef Ci L, Li Y, Wei B, Liang J, Xu C, Wu D (2000) Preparation of carbon nanofibers by the floating catalyst method. Carbon 38:1933–1937CrossRef
Zurück zum Zitat Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281CrossRef Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281CrossRef
Zurück zum Zitat Guinier A (1963) X-ray diffraction. Freeman, San Francisco, p 124 Guinier A (1963) X-ray diffraction. Freeman, San Francisco, p 124
Zurück zum Zitat Han ZH, Yang B, Kim SH, Zachariah MR (2006) Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18:105701–105704CrossRef Han ZH, Yang B, Kim SH, Zachariah MR (2006) Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18:105701–105704CrossRef
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
Zurück zum Zitat Kim SH, Zachariah MR (2005) In-flight size classification of carbon nanotubes by gas phase electrophoresis. Nanotechnology 16:2149–2152CrossRef Kim SH, Zachariah MR (2005) In-flight size classification of carbon nanotubes by gas phase electrophoresis. Nanotechnology 16:2149–2152CrossRef
Zurück zum Zitat Kim SH, Zachariah MR (2006) In-flight kinetic measurement of the aerosol growth of carbon nanotubes by electrical mobility classification. J Phys Chem B 110:4555–4562CrossRef Kim SH, Zachariah MR (2006) In-flight kinetic measurement of the aerosol growth of carbon nanotubes by electrical mobility classification. J Phys Chem B 110:4555–4562CrossRef
Zurück zum Zitat Kim SH, Liu BYH, Zachariah MR (2002) Synthesis of nanoporous metal oxide particles by a new inorganic metrix spray pyrolysis method. Chem Mater 14:2889–2899CrossRef Kim SH, Liu BYH, Zachariah MR (2002) Synthesis of nanoporous metal oxide particles by a new inorganic metrix spray pyrolysis method. Chem Mater 14:2889–2899CrossRef
Zurück zum Zitat Knutson EO, Whitby KT (1975) Aerosol classification by electrical mobility: apparatus, theory, and applications. J Aerosol Sci 6:443–451CrossRef Knutson EO, Whitby KT (1975) Aerosol classification by electrical mobility: apparatus, theory, and applications. J Aerosol Sci 6:443–451CrossRef
Zurück zum Zitat Kodas TT, Hampden-Smith MJ (1999) Aerosol processing of materials. Wiley-VCH, New York Kodas TT, Hampden-Smith MJ (1999) Aerosol processing of materials. Wiley-VCH, New York
Zurück zum Zitat Massaro TA, Petersen EE (1971) Bulk diffusion of carbon-14 through polycrystalline nickel foil between 350 and 700 C. J Appl Phys 42(13):5534–5539CrossRef Massaro TA, Petersen EE (1971) Bulk diffusion of carbon-14 through polycrystalline nickel foil between 350 and 700 C. J Appl Phys 42(13):5534–5539CrossRef
Zurück zum Zitat Mojica JF, Levenson LL (1976) Bulk-to-surface precipitation and surface diffusion of carbon on polycrystalline nickel. Surf Sci 59(2):447–460CrossRef Mojica JF, Levenson LL (1976) Bulk-to-surface precipitation and surface diffusion of carbon on polycrystalline nickel. Surf Sci 59(2):447–460CrossRef
Zurück zum Zitat Nikolaev P, Bronikowski MJ, Bradely RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97CrossRef Nikolaev P, Bronikowski MJ, Bradely RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97CrossRef
Zurück zum Zitat Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482CrossRef Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482CrossRef
Zurück zum Zitat Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382(3–4):361–366CrossRef Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382(3–4):361–366CrossRef
Zurück zum Zitat Vander Wal RL, Ticich TM, Curtis VE (2000) Direct synthesis of metal-catalyzed carbon nanofibers and graphite encapsulated metal nanoparticles. J Phys Chem B 104(49):11606–11611CrossRef Vander Wal RL, Ticich TM, Curtis VE (2000) Direct synthesis of metal-catalyzed carbon nanofibers and graphite encapsulated metal nanoparticles. J Phys Chem B 104(49):11606–11611CrossRef
Zurück zum Zitat Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94(8):4967–4971CrossRef Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94(8):4967–4971CrossRef
Metadaten
Titel
Aerosol formation of Sea-Urchin-like nanostructures of carbon nanotubes on bimetallic nanocomposite particles
verfasst von
S. H. Kim
C. Wang
M. R. Zachariah
Publikationsdatum
01.01.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-0011-6

Weitere Artikel der Ausgabe 1/2011

Journal of Nanoparticle Research 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.