Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2011

01.01.2011 | Research Paper

Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

verfasst von: Markus Büttner, Peter Weber, Frank Schmidl, Paul Seidel, Michael Röder, Matthias Schnabelrauch, Kerstin Wagner, Peter Görnert, Gunnar Glöckl, Werner Weitschies

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter d hyd) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antoniak C, Lindner J, Farle M (2005) Magnetic anisotropy and its temperature dependence in iron-rich FeXPt1-X nanoparticles. Europhys Lett 70:250–256CrossRef Antoniak C, Lindner J, Farle M (2005) Magnetic anisotropy and its temperature dependence in iron-rich FeXPt1-X nanoparticles. Europhys Lett 70:250–256CrossRef
Zurück zum Zitat Bate G, Wohlfahrt EP (1980) Recording materials. In: Handbook of ferromagnetic materials. Elsevier, Amsterdam Bate G, Wohlfahrt EP (1980) Recording materials. In: Handbook of ferromagnetic materials. Elsevier, Amsterdam
Zurück zum Zitat Berkov DV (1998) Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J Phys Condens Matter 10(5):L89–L95CrossRef Berkov DV (1998) Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J Phys Condens Matter 10(5):L89–L95CrossRef
Zurück zum Zitat Berkov DV, Kötitz R (1996) Irreversible relaxation behaviour of a general class of magnetic systems. J Phys Condens Matter 8:1257–1266CrossRef Berkov DV, Kötitz R (1996) Irreversible relaxation behaviour of a general class of magnetic systems. J Phys Condens Matter 8:1257–1266CrossRef
Zurück zum Zitat Blums EA, Cebers AO, Maiorov MM (1997) Magnetic fluids. Walter de Gruyter, Berlin Blums EA, Cebers AO, Maiorov MM (1997) Magnetic fluids. Walter de Gruyter, Berlin
Zurück zum Zitat Buescher K, Helm CA, Gross C, Glöckl G, Romanus E (2004) Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langumir 20:2435–2444CrossRef Buescher K, Helm CA, Gross C, Glöckl G, Romanus E (2004) Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langumir 20:2435–2444CrossRef
Zurück zum Zitat Buschow KHJ (2005) Concise encyclopedia of magnetic and superconducting materials. Elsevier Science & Technology, Amsterdam Buschow KHJ (2005) Concise encyclopedia of magnetic and superconducting materials. Elsevier Science & Technology, Amsterdam
Zurück zum Zitat Buschow KHJ, De Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, New York Buschow KHJ, De Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, New York
Zurück zum Zitat Cotton AA, Mouton H (1907) Nouvelle propriété optique (biréfringence magnétique) de certains liquides organiques non colloïdaux. C R Hebd Seances Acad Sci 145:231–291 Cotton AA, Mouton H (1907) Nouvelle propriété optique (biréfringence magnétique) de certains liquides organiques non colloïdaux. C R Hebd Seances Acad Sci 145:231–291
Zurück zum Zitat Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, BerlinCrossRef Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, BerlinCrossRef
Zurück zum Zitat Hanson M, Johansson C, Pedersen MS, Morup S (1995) The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles. J Phys Condens Matter 7:9269–9277CrossRef Hanson M, Johansson C, Pedersen MS, Morup S (1995) The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles. J Phys Condens Matter 7:9269–9277CrossRef
Zurück zum Zitat Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRef Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRef
Zurück zum Zitat Jeong JR, Lee SJ, Kim JD, Shin SC (2004) Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys Status Solidi B 241:1593–1596CrossRef Jeong JR, Lee SJ, Kim JD, Shin SC (2004) Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys Status Solidi B 241:1593–1596CrossRef
Zurück zum Zitat Kronmüller H, Walz F (1980) Magnetic after effects in Fe3O4 and vacancy-doped magnetite. Philos Mag B 42(3):433–452CrossRef Kronmüller H, Walz F (1980) Magnetic after effects in Fe3O4 and vacancy-doped magnetite. Philos Mag B 42(3):433–452CrossRef
Zurück zum Zitat Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140CrossRef Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140CrossRef
Zurück zum Zitat Perrin F (1934) Mouvement brownien d’un ellipsoide—I Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5(10):497–511CrossRef Perrin F (1934) Mouvement brownien d’un ellipsoide—I Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5(10):497–511CrossRef
Zurück zum Zitat Romanus E, Groß C, Kötitz R, Prass S, Lange J, Weber P, Weitschies W (2001) Monitoring of biological binding reactions by magneto-optical relaxation measurements. Magnetohydrodynamics 37:328 Romanus E, Groß C, Kötitz R, Prass S, Lange J, Weber P, Weitschies W (2001) Monitoring of biological binding reactions by magneto-optical relaxation measurements. Magnetohydrodynamics 37:328
Zurück zum Zitat Romanus E, Groß C, Glöckl G, Weber P, Weitschies W (2002) Determination of biological binding reactions by field-induced birefringence measurements. J Magn Magn Mater 252:384–386CrossRef Romanus E, Groß C, Glöckl G, Weber P, Weitschies W (2002) Determination of biological binding reactions by field-induced birefringence measurements. J Magn Magn Mater 252:384–386CrossRef
Zurück zum Zitat Romanus E, Berkov DV, Prass S, Groß C, Weitschies W, Weber P (2003) Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology 14:1251–1254CrossRef Romanus E, Berkov DV, Prass S, Groß C, Weitschies W, Weber P (2003) Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology 14:1251–1254CrossRef
Zurück zum Zitat Romanus E, Koettig T, Glöckl G, Prass S, Schmidl F, Heinrich J, Gopinadhan G, Berkov DV, Helm CA, Weitschies W, Weber P, Seidel P (2007) Energy barrier distributions of maghemite nanoparticles. Nanotechnology 18:115709CrossRef Romanus E, Koettig T, Glöckl G, Prass S, Schmidl F, Heinrich J, Gopinadhan G, Berkov DV, Helm CA, Weitschies W, Weber P, Seidel P (2007) Energy barrier distributions of maghemite nanoparticles. Nanotechnology 18:115709CrossRef
Zurück zum Zitat Sasaki M, Jönsson PE, Takayama H (2005) Aging and memory effects in superparamagnets and superspin glasses. Phys Rev B 71:104405CrossRef Sasaki M, Jönsson PE, Takayama H (2005) Aging and memory effects in superparamagnets and superspin glasses. Phys Rev B 71:104405CrossRef
Zurück zum Zitat Schmidl F, Weber P, Koettig T, Büttner M, Prass S, Becker C, Mans M, Heinrich J, Röder M, Wagner K, Berkov DV, Görnert P, Glöckl G, Weitschies W, Seidel P (2007) Characterization of energy barrier distribution of lyophilized ferrofluids by magnetic relaxation measurements. J Magn Magn Mater 311:171–175CrossRef Schmidl F, Weber P, Koettig T, Büttner M, Prass S, Becker C, Mans M, Heinrich J, Röder M, Wagner K, Berkov DV, Görnert P, Glöckl G, Weitschies W, Seidel P (2007) Characterization of energy barrier distribution of lyophilized ferrofluids by magnetic relaxation measurements. J Magn Magn Mater 311:171–175CrossRef
Zurück zum Zitat Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240(826):599–642CrossRef Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240(826):599–642CrossRef
Zurück zum Zitat Suzuki M, Fullem SI, Suzuki IS (2009) Observation of superspin-glass behaviour in Fe3O4 nanoparticles. Phys Rev B 79:024418CrossRef Suzuki M, Fullem SI, Suzuki IS (2009) Observation of superspin-glass behaviour in Fe3O4 nanoparticles. Phys Rev B 79:024418CrossRef
Zurück zum Zitat Wagner K, Kautz A, Röder M, Schwalbe M, Pachmann K, Clement JH, Schnabelrauch M (2004) Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Appl Organomet Chem 18:514–519CrossRef Wagner K, Kautz A, Röder M, Schwalbe M, Pachmann K, Clement JH, Schnabelrauch M (2004) Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Appl Organomet Chem 18:514–519CrossRef
Metadaten
Titel
Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid
verfasst von
Markus Büttner
Peter Weber
Frank Schmidl
Paul Seidel
Michael Röder
Matthias Schnabelrauch
Kerstin Wagner
Peter Görnert
Gunnar Glöckl
Werner Weitschies
Publikationsdatum
01.01.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-0015-2

Weitere Artikel der Ausgabe 1/2011

Journal of Nanoparticle Research 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.