Skip to main content
Erschienen in: Neural Computing and Applications 8/2021

23.07.2020 | Original Article

Aggregate density-based concept drift identification for dynamic sensor data models

verfasst von: Mohsen Asghari, Daniel Sierra-Sosa, Michael Telahun, Anup Kumar, Adel S. Elmaghraby

Erschienen in: Neural Computing and Applications | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reduced costs of embedded systems and sensor technology coupled with the increased speed in communication enables businesses and consumers to deploy a large number of sensing devices. This conjunction of technologies has come to be known as the Internet of Things (IoT). Data collected from IoT devices are continuously increasing, and many approaches have been proposed to deal with the big data that is now generated. Multiple artificial intelligent techniques have been proposed and used to extract knowledge out of these continuously growing datasets. In this paper, we demonstrate that a better understanding of data can be achieved through dynamic modeling. This dynamic behavior is observed in many practical scenarios and needs to be taken into account to have a higher accuracy in prediction and analysis for policy making and business-related decisions. We propose and test a novel methodology to detect the dynamic nature of data over time. Machine learning models have been known to suffer from changes in streaming data over time which is defined as concept drift and therefore by detecting this phenomena such models can be improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akouemo HN, Povinelli RJ (2016) Probabilistic anomaly detection in natural gas time series data. Int J Forecast 32(3):948–956CrossRef Akouemo HN, Povinelli RJ (2016) Probabilistic anomaly detection in natural gas time series data. Int J Forecast 32(3):948–956CrossRef
2.
Zurück zum Zitat Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift detection method. In: Fourth international workshop on knowledge discovery from data streams, vol 6, pp 77–86 Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift detection method. In: Fourth international workshop on knowledge discovery from data streams, vol 6, pp 77–86
3.
Zurück zum Zitat Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining, SIAM, pp 443–448 Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining, SIAM, pp 443–448
4.
Zurück zum Zitat Caster O, Dietrich J, Kürzinger ML, Lerch M, Maskell S, Norén GN, Tcherny-Lessenot S, Vroman B, Wisniewski A, van Stekelenborg J (2018) Assessment of the utility of social media for broad-ranging statistical signal detection in pharmacovigilance: results from the web-radr project. Drug safety 41(12):1355–1369CrossRef Caster O, Dietrich J, Kürzinger ML, Lerch M, Maskell S, Norén GN, Tcherny-Lessenot S, Vroman B, Wisniewski A, van Stekelenborg J (2018) Assessment of the utility of social media for broad-ranging statistical signal detection in pharmacovigilance: results from the web-radr project. Drug safety 41(12):1355–1369CrossRef
5.
Zurück zum Zitat Cejnek M, Bukovsky I (2018) Concept drift robust adaptive novelty detection for data streams. Neurocomputing 309:46–53CrossRef Cejnek M, Bukovsky I (2018) Concept drift robust adaptive novelty detection for data streams. Neurocomputing 309:46–53CrossRef
6.
Zurück zum Zitat Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM computing surveys (CSUR) 41(3):15CrossRef Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM computing surveys (CSUR) 41(3):15CrossRef
7.
Zurück zum Zitat Delph LF, Galloway LF, Stanton ML (1996) Sexual dimorphism in flower size. Am Nat 148(2):299–320CrossRef Delph LF, Galloway LF, Stanton ML (1996) Sexual dimorphism in flower size. Am Nat 148(2):299–320CrossRef
8.
Zurück zum Zitat Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min ASA Data Sci J 2(5–6):311–327MathSciNetCrossRef Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min ASA Data Sci J 2(5–6):311–327MathSciNetCrossRef
9.
Zurück zum Zitat Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans Neural Netw 22(10):1517–1531CrossRef Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans Neural Netw 22(10):1517–1531CrossRef
10.
Zurück zum Zitat Frías-Blanco I, del Campo-Ávila J, Ramos-Jimenez G, Morales-Bueno R, Ortiz-Díaz A, Caballero-Mota Y (2014) Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans Knowl Data Eng 27(3):810–823CrossRef Frías-Blanco I, del Campo-Ávila J, Ramos-Jimenez G, Morales-Bueno R, Ortiz-Díaz A, Caballero-Mota Y (2014) Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans Knowl Data Eng 27(3):810–823CrossRef
11.
Zurück zum Zitat Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence, Springer, pp 286–295 Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence, Springer, pp 286–295
12.
Zurück zum Zitat Gonçalves PM Jr, de Carvalho Santos SG, Barros RS, Vieira DC (2014) A comparative study on concept drift detectors. Expert Syst Appl 41(18):8144–8156CrossRef Gonçalves PM Jr, de Carvalho Santos SG, Barros RS, Vieira DC (2014) A comparative study on concept drift detectors. Expert Syst Appl 41(18):8144–8156CrossRef
13.
Zurück zum Zitat Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660CrossRef Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660CrossRef
14.
Zurück zum Zitat Holmberg M, Artursson T (2002) Drift compensation, standards, and calibration methods. Handbook of machine olfaction: electronic nose technology. Wiley, New York, pp 325–346CrossRef Holmberg M, Artursson T (2002) Drift compensation, standards, and calibration methods. Handbook of machine olfaction: electronic nose technology. Wiley, New York, pp 325–346CrossRef
15.
Zurück zum Zitat Lemaire V, Salperwyck C, Bondu A (2014) A survey on supervised classification on data streams. In: European Business Intelligence Summer School, Springer, pp 88–125 Lemaire V, Salperwyck C, Bondu A (2014) A survey on supervised classification on data streams. In: European Business Intelligence Summer School, Springer, pp 88–125
16.
Zurück zum Zitat Liu A, Lu J, Liu F, Zhang G (2018) Accumulating regional density dissimilarity for concept drift detection in data streams. Pattern Recognit 76:256–272CrossRef Liu A, Lu J, Liu F, Zhang G (2018) Accumulating regional density dissimilarity for concept drift detection in data streams. Pattern Recognit 76:256–272CrossRef
17.
18.
Zurück zum Zitat Malhotra P, Vig L, Shroff G, Agarwal P (2015) Long short term memory networks for anomaly detection in time series. In: Proceedings, Presses universitaires de Louvain, p 89 Malhotra P, Vig L, Shroff G, Agarwal P (2015) Long short term memory networks for anomaly detection in time series. In: Proceedings, Presses universitaires de Louvain, p 89
19.
Zurück zum Zitat Padakandla S, Bhatnagar S, et al. (2019) Reinforcement learning in non-stationary environments. arXiv preprint arXiv:190503970 Padakandla S, Bhatnagar S, et al. (2019) Reinforcement learning in non-stationary environments. arXiv preprint arXiv:​190503970
20.
Zurück zum Zitat Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plann Inference 90(2):227–244MathSciNetCrossRef Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plann Inference 90(2):227–244MathSciNetCrossRef
21.
Zurück zum Zitat Souza VMA, Silva DF, Gama J, Batista GEAPA (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of SIAM international conference on data mining (SDM), pp 873–881 Souza VMA, Silva DF, Gama J, Batista GEAPA (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of SIAM international conference on data mining (SDM), pp 873–881
22.
Zurück zum Zitat Sugiyama M, Yamada M, du Plessis MC (2013) Learning under nonstationarity: covariate shift and class-balance change. Wiley Interdiscip Rev Comput Stat 5(6):465–477CrossRef Sugiyama M, Yamada M, du Plessis MC (2013) Learning under nonstationarity: covariate shift and class-balance change. Wiley Interdiscip Rev Comput Stat 5(6):465–477CrossRef
23.
Zurück zum Zitat Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R (2012) Chemical gas sensor drift compensation using classifier ensembles. Sens Actuators B Chem 166:320–329CrossRef Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R (2012) Chemical gas sensor drift compensation using classifier ensembles. Sens Actuators B Chem 166:320–329CrossRef
24.
Zurück zum Zitat Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101 Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101
25.
Zurück zum Zitat Zliobaite I, Bifet A, Gaber M, Gabrys B, Gama J, Minku L, Musial K (2012) Next challenges for adaptive learning systems. ACM SIGKDD Explor Newsl 14(1):48–55CrossRef Zliobaite I, Bifet A, Gaber M, Gabrys B, Gama J, Minku L, Musial K (2012) Next challenges for adaptive learning systems. ACM SIGKDD Explor Newsl 14(1):48–55CrossRef
26.
Zurück zum Zitat Zuppa M, Distante C, Siciliano P, Persaud KC (2004) Drift counteraction with multiple self-organising maps for an electronic nose. Sens Actuators B Chem 98(2–3):305–317CrossRef Zuppa M, Distante C, Siciliano P, Persaud KC (2004) Drift counteraction with multiple self-organising maps for an electronic nose. Sens Actuators B Chem 98(2–3):305–317CrossRef
Metadaten
Titel
Aggregate density-based concept drift identification for dynamic sensor data models
verfasst von
Mohsen Asghari
Daniel Sierra-Sosa
Michael Telahun
Anup Kumar
Adel S. Elmaghraby
Publikationsdatum
23.07.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05190-1

Weitere Artikel der Ausgabe 8/2021

Neural Computing and Applications 8/2021 Zur Ausgabe