Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2012

01.03.2012 | Research Paper

Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

verfasst von: Karolina Siskova, Jiri Tucek, Libor Machala, Eva Otyepkova, Jan Filip, Klara Safarova, Jiri Pechousek, Radek Zboril

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic–organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic–organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Carpenter EE, Calvin S, Stroud RM, Harris VG (2003) Passivated iron as core-shell nanoparticles. Chem Mater 15:3245–3246CrossRef Carpenter EE, Calvin S, Stroud RM, Harris VG (2003) Passivated iron as core-shell nanoparticles. Chem Mater 15:3245–3246CrossRef
Zurück zum Zitat Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726CrossRef Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726CrossRef
Zurück zum Zitat Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2nd edn. Wiley-VCH Publishers, Weinheim Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2nd edn. Wiley-VCH Publishers, Weinheim
Zurück zum Zitat Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys, vol 98. Wiley, New York, pp 283–494CrossRef Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys, vol 98. Wiley, New York, pp 283–494CrossRef
Zurück zum Zitat Durmus Z, Kavas H, Toprak MS, Baykal A, Altincekic TG, Aslan A, Bozkurt A, Cosgun S (2009) l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloys Compd 484:371–376CrossRef Durmus Z, Kavas H, Toprak MS, Baykal A, Altincekic TG, Aslan A, Bozkurt A, Cosgun S (2009) l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloys Compd 484:371–376CrossRef
Zurück zum Zitat Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M (2007) Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol 41:4367–4374CrossRef Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M (2007) Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol 41:4367–4374CrossRef
Zurück zum Zitat Geng G, Jin Z, Li T, Qi X (2009a) Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000CrossRef Geng G, Jin Z, Li T, Qi X (2009a) Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000CrossRef
Zurück zum Zitat Geng B, Jin Z, Li T, Qi X (2009b) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830CrossRef Geng B, Jin Z, Li T, Qi X (2009b) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830CrossRef
Zurück zum Zitat Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635CrossRef Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635CrossRef
Zurück zum Zitat Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35CrossRef Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35CrossRef
Zurück zum Zitat He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221CrossRef He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221CrossRef
Zurück zum Zitat Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRef Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRef
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef
Zurück zum Zitat Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef
Zurück zum Zitat Karabelli D, Uzum C, Shahwan T, Eroglu AE, Scott TB, Hallam KR, Lieberwirth I (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind Eng Chem Res 47:4758–4764CrossRef Karabelli D, Uzum C, Shahwan T, Eroglu AE, Scott TB, Hallam KR, Lieberwirth I (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind Eng Chem Res 47:4758–4764CrossRef
Zurück zum Zitat Katsenovich YP, Miralles-Wilhelm FR (2009) Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci Total Environ 407:4986–4993CrossRef Katsenovich YP, Miralles-Wilhelm FR (2009) Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci Total Environ 407:4986–4993CrossRef
Zurück zum Zitat Kim HJ, Phenrat T, Tilton RD, Lowry GV (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830CrossRef Kim HJ, Phenrat T, Tilton RD, Lowry GV (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830CrossRef
Zurück zum Zitat Kim HS, Ahn JY, Hwang KY, Kim IK, Hwang I (2010) Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity. Environ Sci Technol 44:1760–1766CrossRef Kim HS, Ahn JY, Hwang KY, Kim IK, Hwang I (2010) Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity. Environ Sci Technol 44:1760–1766CrossRef
Zurück zum Zitat Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRef Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRef
Zurück zum Zitat Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef
Zurück zum Zitat Liang F, Fan J, Guo Y, Fan M, Wang J, Yang H (2008) Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind Eng Chem Res 47:8550–8554CrossRef Liang F, Fan J, Guo Y, Fan M, Wang J, Yang H (2008) Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind Eng Chem Res 47:8550–8554CrossRef
Zurück zum Zitat Lien HL, Zhang W (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surf A 191:97–105CrossRef Lien HL, Zhang W (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surf A 191:97–105CrossRef
Zurück zum Zitat Liou YH, Lo SL, Kuan WH, Lin CJ, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492CrossRef Liou YH, Lo SL, Kuan WH, Lin CJ, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492CrossRef
Zurück zum Zitat Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRef Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRef
Zurück zum Zitat Machala L, Zboril R, Gedanken A (2007) Amorphous iron(III) oxide: a review. J Phys Chem B 111:4003–4018CrossRef Machala L, Zboril R, Gedanken A (2007) Amorphous iron(III) oxide: a review. J Phys Chem B 111:4003–4018CrossRef
Zurück zum Zitat Mantion A, Gozzo F, Schmitt B, Stern WB, Gerber Y, Robin AY, Fromm KM, Painsi M, Taubert A (2008) Amino acids in iron oxide mineralization: (incomplete) crystal phase selection is achieved even with single amino acids. J Phys Chem C 112:12104–12110CrossRef Mantion A, Gozzo F, Schmitt B, Stern WB, Gerber Y, Robin AY, Fromm KM, Painsi M, Taubert A (2008) Amino acids in iron oxide mineralization: (incomplete) crystal phase selection is achieved even with single amino acids. J Phys Chem C 112:12104–12110CrossRef
Zurück zum Zitat Marinescu G, Patron L, Culita DC, Neagoe C, Lepadatu CI, Balint I, Bessais L, Cizmas CB (2006) Synthesis of magnetite nanoparticles in the presence of aminoacids. J Nanopart Res 8:1045–1051CrossRef Marinescu G, Patron L, Culita DC, Neagoe C, Lepadatu CI, Balint I, Bessais L, Cizmas CB (2006) Synthesis of magnetite nanoparticles in the presence of aminoacids. J Nanopart Res 8:1045–1051CrossRef
Zurück zum Zitat Martin JE, Herzing AA, Yan W, Li XQ, Koel BE, Kiely C, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24:4329–4334CrossRef Martin JE, Herzing AA, Yan W, Li XQ, Koel BE, Kiely C, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24:4329–4334CrossRef
Zurück zum Zitat Nakamoto K (2009a) Infrared and Raman spectra of inorganic and coordination compounds, Part A: Theory and applications in inorganic chemistry. Wiley Inc., Hoboken, pp 82–84, 254–258 Nakamoto K (2009a) Infrared and Raman spectra of inorganic and coordination compounds, Part A: Theory and applications in inorganic chemistry. Wiley Inc., Hoboken, pp 82–84, 254–258
Zurück zum Zitat Nakamoto K (2009b) Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry. Wiley Inc., Hoboken, pp 12–21, 58, 62, 69, 177 Nakamoto K (2009b) Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry. Wiley Inc., Hoboken, pp 12–21, 58, 62, 69, 177
Zurück zum Zitat Nurmi JT, Sarathy V, Tratnyek PG, Baer DR, Amonette JE, Karkamkar A (2011) Recovery of iron/iron oxide nanoparticles from solution: comparison of methods and their effects. J Nanopart Res 13:1937–1952CrossRef Nurmi JT, Sarathy V, Tratnyek PG, Baer DR, Amonette JE, Karkamkar A (2011) Recovery of iron/iron oxide nanoparticles from solution: comparison of methods and their effects. J Nanopart Res 13:1937–1952CrossRef
Zurück zum Zitat Papefthymiou GC (2009) Nanoparticle magnetism. NanoToday 4:438–447 Papefthymiou GC (2009) Nanoparticle magnetism. NanoToday 4:438–447
Zurück zum Zitat Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation («aging») and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation («aging») and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef
Zurück zum Zitat Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DH, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRef Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DH, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRef
Zurück zum Zitat Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594CrossRef Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594CrossRef
Zurück zum Zitat Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Mayjaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494CrossRef Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Mayjaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494CrossRef
Zurück zum Zitat Schneeweiss O, Zboril R, Mashlan M, Petrovsky E, Tucek J (2006) Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix. Nanotechnology 17:607–616CrossRef Schneeweiss O, Zboril R, Mashlan M, Petrovsky E, Tucek J (2006) Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix. Nanotechnology 17:607–616CrossRef
Zurück zum Zitat Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRef Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRef
Zurück zum Zitat Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRef Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRef
Zurück zum Zitat Slunsky J (2010) Production and application of nanoscale zero-valent iron (nZVI) for groundwater remediation and other utilization. VEGAS-Kolloquium:101–105 Slunsky J (2010) Production and application of nanoscale zero-valent iron (nZVI) for groundwater remediation and other utilization. VEGAS-Kolloquium:101–105
Zurück zum Zitat Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 440:5514–5519CrossRef Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 440:5514–5519CrossRef
Zurück zum Zitat Sousa MH, Tourinho FA, Rubim JC (2000) Use of Raman micro-spectroscopy in the characterization of MIIFe2O4 (M = Fe, Zn) electric double layer ferrofluids. J Raman Spectrosc 31:185–191CrossRef Sousa MH, Tourinho FA, Rubim JC (2000) Use of Raman micro-spectroscopy in the characterization of MIIFe2O4 (M = Fe, Zn) electric double layer ferrofluids. J Raman Spectrosc 31:185–191CrossRef
Zurück zum Zitat Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRef Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRef
Zurück zum Zitat Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A 308:60–66CrossRef Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A 308:60–66CrossRef
Zurück zum Zitat Tiehm A, Krassnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16:617–621CrossRef Tiehm A, Krassnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16:617–621CrossRef
Zurück zum Zitat Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79CrossRef Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79CrossRef
Zurück zum Zitat Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. NanoToday 1:44–48 Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. NanoToday 1:44–48
Zurück zum Zitat Wang Q, Lee S, Choi H (2010a) Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity. J Phys Chem C 114:2027–2033CrossRef Wang Q, Lee S, Choi H (2010a) Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity. J Phys Chem C 114:2027–2033CrossRef
Zurück zum Zitat Wang W, Thou M, Jin Z, Li T (2010b) Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173:724–730CrossRef Wang W, Thou M, Jin Z, Li T (2010b) Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173:724–730CrossRef
Zurück zum Zitat Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRef Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRef
Zurück zum Zitat Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. NanoToday 5:128–142 Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. NanoToday 5:128–142
Zurück zum Zitat Zhang X, Deng B, Guo J, Wang Y, Lan Y (2011) Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. J Environ Manag 92:1328–1333CrossRef Zhang X, Deng B, Guo J, Wang Y, Lan Y (2011) Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. J Environ Manag 92:1328–1333CrossRef
Metadaten
Titel
Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment
verfasst von
Karolina Siskova
Jiri Tucek
Libor Machala
Eva Otyepkova
Jan Filip
Klara Safarova
Jiri Pechousek
Radek Zboril
Publikationsdatum
01.03.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-0805-9

Weitere Artikel der Ausgabe 4/2012

Journal of Nanoparticle Research 4/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.