Skip to main content

2017 | OriginalPaper | Buchkapitel

12. Algebraic Manifolds

verfasst von : Alexey L. Gorodentsev

Erschienen in: Algebra II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Everywhere in this chapter we assume by default that the ground field \(\mathbb{k}\) is algebraically closed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recall that \(\mathcal{O}_{Z}(V ) =\{\, f \in \mathbb{k}(Z)\mid V \subset \mathop{\mathrm{Dom}}\nolimits (\,f)\}\) denotes the algebra of rational functions, regular in V ⊂ Z, on an affine algebraic variety Z (see Sect. 11.​4.​1 on p. 254 for details).
 
2
Without the epithet “affine.”
 
3
See Chap. 11 of Algebra I.
 
4
See Example 11.​2 of Algebra I.
 
5
The first index i is the order number of the chart, while the second index numbers the coordinates within the ith chart and takes n values \(0\leqslant \nu \leqslant n\), νi.
 
6
See Sect. 2.​6.​4 on p. 49.
 
7
See Example 9.​8 on p. 194.
 
8
The first formula relates 2n affine coordinates (x 1, …, , x n, y 1, … , y n) in \(\mathbb{A}^{n} \times \mathbb{A}^{n} = \mathbb{A}^{2n}\), whereas the second deals with two collections of homogeneous coordinates (x 0: x 1: ⋯ : x n), (y 0: y 1: ⋯ : y n) on \(\mathbb{P}_{n} \times \mathbb{P}_{n}\) (note that they cannot be combined into one collection). We will see in Exercise 12.12 that the latter equations actually determine a closed submanifold of \(\mathbb{P}_{n} \times \mathbb{P}_{n}\) in the sense of Sect. 12.1.2.
 
9
Given an irreducible algebraic manifold X, a (Weil) divisor on X is an element of the free abelian group generated by all closed irreducible submanifolds of codimension 1 in X (the dimensions of algebraic varieties will be discussed in Sect. 12.5 on p. 281).
 
10
Compare with Sect. 11.3.2 of Algebra I.
 
11
See Example 11.6 of Algebra I, especially formula (11.14) there.
 
12
That is, to the points of the “hypersurface” \(Z(A) \subset \mathbb{P}_{1}\), some of which may be multiple.
 
13
In Example 12.9 on p. 288, we will see that the same holds for every system of homogeneous polynomial equations such that the number of equations equals the number of unknowns.
 
14
This means that both binary forms A, B do not vanish at the point (0: 1).
 
15
See Example 12.4 on p. 271.
 
16
That is, indecomposable into a disjoint union of two nonempty closed subsets.
 
17
Possibly after appropriate renumbering of the coordinates x 1, x 2, , x n. Note that this holds over every infinite field \(\mathbb{k}\), not necessarily algebraically closed.
 
18
In particular, this implies that \(\mathop{\mathrm{tr}}\nolimits \deg \mathbb{k}[x_{1},x_{2},\ldots,x_{n}]/(\,f) = n - 1\).
 
19
In honor of Emmy Noether, who proved a version of this claim in 1926.
 
20
See Sect. 10.​4 on p. 236.
 
21
For i = 1, this means that f 1 is not a zero divisor in \(\mathbb{k}[X]\). A sequence of functions possessing this property is called a regular sequence, and the corresponding subvariety V ( f 1,f 2,…,f m) ⊂ X is called a complete intersection.
 
22
See Sect. 12.3 on p. 274.
 
23
Compare with Problem 17.20 of Algebra I.
 
24
See Sect. 3.5.4 of Algebra I.
 
25
See Exercise 12.9 on p. 271.
 
26
That is, without singular points; see Sect. 2.​5.​5 on p. 40.
 
27
That is, an irreducible variety of dimension one not contained in a hyperplane.
 
Literatur
[DK]
Zurück zum Zitat Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334.MathSciNetCrossRef Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334.MathSciNetCrossRef
[Fu]
Zurück zum Zitat Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.MATH Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.MATH
[FH]
Zurück zum Zitat Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.MATH Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.MATH
[Mo]
Zurück zum Zitat Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977. Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977.
Metadaten
Titel
Algebraic Manifolds
verfasst von
Alexey L. Gorodentsev
Copyright-Jahr
2017
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-50853-5_12