Skip to main content
Erschienen in: Autonomous Agents and Multi-Agent Systems 2/2023

01.10.2023

Algorithms for partially robust team formation

verfasst von: Nicolas Schwind, Emir Demirović, Katsumi Inoue, Jean-Marie Lagniez

Erschienen in: Autonomous Agents and Multi-Agent Systems | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In one of its simplest forms, Team Formation involves deploying the least expensive team of agents while covering a set of skills. While current algorithms are reasonably successful in computing the best teams, the resilience to change of such solutions remains an important concern: Once a team has been formed, some of the agents considered at start may be finally defective and some skills may become uncovered. Two recently introduced solution concepts deal with this issue proactively: 1) form a team which is robust to changes so that after some agent losses, all skills remain covered, and 2) opt for a recoverable team, i.e., it can be "repaired" in the worst case by hiring new agents while keeping the overall deployment cost minimal. In this paper, we introduce the problem of partially robust team formation (PR–TF). Partial robustness is a weaker form of robustness which guarantees a certain degree of skill coverage after some agents are lost. We analyze the computational complexity of PR-TF and provide two complete algorithms for it. We compare the performance of our algorithms with the existing methods for robust and recoverable team formation on several existing and newly introduced benchmarks. Our empirical study demonstrates that partial robustness offers an interesting trade-off between (full) robustness and recoverability in terms of computational efficiency, skill coverage guaranteed after agent losses and repairability. This paper is an extended and revised version of as reported by (Schwind et al., Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’21), pp. 1154–1162, 2021).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
One does not need to make any assumption about the way f, w, and \(\alpha\) are represented for our result to hold. However, one must assume that the corresponding mappings are computed in polynomial time.
 
2
The precise formalization in terms of weighted TF problem description is rather straightforward, it is not provided here to avoid the introduction of heavy notations.
 
3
Publicly available benchmark generation protocols related to facility deployment can be found at http://​old.​math.​nsc.​ru/​AP/​benchmarks/​english.​html. However, to the best of our knowledge, none of these protocols includes the generation of skill weights. Adapting any of these protocols to fit our setting would be necessary, but this falls outside the scope of this paper.
 
4
Note that all pairs of sets \(\{z^r_1, z^r_2\}\) and \(\{z^{r'}_1, z^{r'}_2\}\) are pairwise disjoint when \(r \ne r'\), so that all assignments \(\{\omega ^r_Z \mid c_r \in \varphi \}\) can be defined independently of each other.
 
Literatur
1.
Zurück zum Zitat Garey, M. R., & Johnson, D. S., Freeman W. H (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Garey, M. R., & Johnson, D. S., Freeman W. H (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness.
2.
Zurück zum Zitat Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., & Marquis, P. (2015). How to form a task-oriented robust team. In: Proceedings of the 14th international conference on autonomous agents and multiagent systems (AAMAS’15), pp. 395–403. Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., & Marquis, P. (2015). How to form a task-oriented robust team. In: Proceedings of the 14th international conference on autonomous agents and multiagent systems (AAMAS’15), pp. 395–403.
3.
Zurück zum Zitat Demirović, E., Schwind, N., Okimoto, T., & Inoue, K. (2018). Recoverable team formation: Building teams resilient to change. In: Proceedings of the 17th international conference on autonomous agents and multi-agent systems (AAMAS’18), pp. 1362–1370. Demirović, E., Schwind, N., Okimoto, T., & Inoue, K. (2018). Recoverable team formation: Building teams resilient to change. In: Proceedings of the 17th international conference on autonomous agents and multi-agent systems (AAMAS’18), pp. 1362–1370.
4.
Zurück zum Zitat Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2017). A survey of healthcare facility location. Computers & Operations Research, 79, 223–263.MathSciNet Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2017). A survey of healthcare facility location. Computers & Operations Research, 79, 223–263.MathSciNet
5.
Zurück zum Zitat Schwind, N., Demirović, E., Inoue, K., Lagniez, J. (2021). Partial robustness in team formation: Bridging the gap between robustness and resilience. In: Proceedings of the 20th international conference on autonomous agents and multiagent systems (AAMAS’21), pp. 1154–1162. Schwind, N., Demirović, E., Inoue, K., Lagniez, J. (2021). Partial robustness in team formation: Bridging the gap between robustness and resilience. In: Proceedings of the 20th international conference on autonomous agents and multiagent systems (AAMAS’21), pp. 1154–1162.
7.
Zurück zum Zitat Juárez, J., Santos, C. P., & Brizuela, C. A. (2021). A comprehensive review and a taxonomy proposal of team formation problems. ACM Computing Surveys, 54(7), 1–33. Juárez, J., Santos, C. P., & Brizuela, C. A. (2021). A comprehensive review and a taxonomy proposal of team formation problems. ACM Computing Surveys, 54(7), 1–33.
8.
Zurück zum Zitat Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752.
9.
Zurück zum Zitat Schwind, N., Magnin, M., Inoue, K., Okimoto, T., Sato, T., Minami, K., & Maruyama, H. (2016). Formalization of resilience for constraint-based dynamic systems. Journal of Reliable Intelligent Environments, 2(1), 17–35. Schwind, N., Magnin, M., Inoue, K., Okimoto, T., Sato, T., Minami, K., & Maruyama, H. (2016). Formalization of resilience for constraint-based dynamic systems. Journal of Reliable Intelligent Environments, 2(1), 17–35.
10.
Zurück zum Zitat Andrejczuk, E., Bistaffa, F., Blum, C., Rodríguez-Aguilar, J. A., & Sierra, C. (2019). Synergistic team composition: A computational approach to foster diversity in teams. Knowledge-Based Systems, 182(104), 799. Andrejczuk, E., Bistaffa, F., Blum, C., Rodríguez-Aguilar, J. A., & Sierra, C. (2019). Synergistic team composition: A computational approach to foster diversity in teams. Knowledge-Based Systems, 182(104), 799.
11.
Zurück zum Zitat Kurtan, C., Yolum, P., & Dastani, M. (2020). An ideal team is more than a team of ideal agents. In: Proceedings of the 24th European conference on artificial intelligence (ECAI’20), vol. 325, pp. 43–50. Kurtan, C., Yolum, P., & Dastani, M. (2020). An ideal team is more than a team of ideal agents. In: Proceedings of the 24th European conference on artificial intelligence (ECAI’20), vol. 325, pp. 43–50.
12.
Zurück zum Zitat Barambones, J., Richoux, F., Imbert, R., & Inoue, K. (2020). Resilient team formation with stabilisability of agent networks for task allocation. ACM Transactions on Autonomous and Adaptive Systems, 15(3), 1–24. Barambones, J., Richoux, F., Imbert, R., & Inoue, K. (2020). Resilient team formation with stabilisability of agent networks for task allocation. ACM Transactions on Autonomous and Adaptive Systems, 15(3), 1–24.
13.
Zurück zum Zitat Igarashi, A., Ota, K., Sakurai, Y., & Yokoo, M. (2019). Robustness against agent failure in hedonic games. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19), pp. 364–370. Igarashi, A., Ota, K., Sakurai, Y., & Yokoo, M. (2019). Robustness against agent failure in hedonic games. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19), pp. 364–370.
14.
Zurück zum Zitat Okimoto, T., Ribeiro, T., Bouchabou, D., & Inoue, K. (2016). Mission oriented robust multi-team formation and its application to robot rescue simulation. In: Proceedings of the 25th international joint conference on artificial intelligence (IJCAI’16), pp. 454–460. Okimoto, T., Ribeiro, T., Bouchabou, D., & Inoue, K. (2016). Mission oriented robust multi-team formation and its application to robot rescue simulation. In: Proceedings of the 25th international joint conference on artificial intelligence (IJCAI’16), pp. 454–460.
15.
Zurück zum Zitat Terazawa, R., & Fujita, K. (2022) Allocation considering agent importance in constrained robust multi-team formation. In: Proceedings of the 14th international conference on agents and artificial intelligence (ICAART’22), pp. 131–138. Terazawa, R., & Fujita, K. (2022) Allocation considering agent importance in constrained robust multi-team formation. In: Proceedings of the 14th international conference on agents and artificial intelligence (ICAART’22), pp. 131–138.
16.
Zurück zum Zitat Malencia, M., Kumar, V., Pappas, G. J., & Prorok, A. (2021). Fair robust assignment using redundancy. IEEE Robotics and Automation Letters, 6(2), 4217–4224. Malencia, M., Kumar, V., Pappas, G. J., & Prorok, A. (2021). Fair robust assignment using redundancy. IEEE Robotics and Automation Letters, 6(2), 4217–4224.
17.
Zurück zum Zitat Bachrach, Y., & Shah, N. (2013). Reliability weighted voting games. In B. Vöcking (Ed.), Algorithmic Game Theory (pp. 38–49). Springer. Bachrach, Y., & Shah, N. (2013). Reliability weighted voting games. In B. Vöcking (Ed.), Algorithmic Game Theory (pp. 38–49). Springer.
18.
Zurück zum Zitat Bachrach, Y., Meir, R., Feldman, M., & Tennenholtz, M. (2011). Solving cooperative reliability games. In: Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI’11), p. 27-34. Bachrach, Y., Meir, R., Feldman, M., & Tennenholtz, M. (2011). Solving cooperative reliability games. In: Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI’11), p. 27-34.
19.
Zurück zum Zitat Bachrach, Y., Kash, I., & Shah, N. (2012). Agent failures in totally balanced games and convex games. In P. W. Goldberg (Ed.), Internet and Network Economics (pp. 15–29). Springer. Bachrach, Y., Kash, I., & Shah, N. (2012). Agent failures in totally balanced games and convex games. In P. W. Goldberg (Ed.), Internet and Network Economics (pp. 15–29). Springer.
20.
Zurück zum Zitat Kaminka, G. A., & Tambe, M. (2000). Robust agent teams via socially-attentive monitoring. Journal of Artificial Intelligence Research, 12, 105–147. Kaminka, G. A., & Tambe, M. (2000). Robust agent teams via socially-attentive monitoring. Journal of Artificial Intelligence Research, 12, 105–147.
21.
Zurück zum Zitat Kwak, J.y., Yang, R., Yin, Z., Taylor, M.E., & Tambe, M. (2011). Towards addressing model uncertainty: Robust execution-time coordination for teamwork. In: 2011 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology, vol. 2, pp. 204–207 Kwak, J.y., Yang, R., Yin, Z., Taylor, M.E., & Tambe, M. (2011). Towards addressing model uncertainty: Robust execution-time coordination for teamwork. In: 2011 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology, vol. 2, pp. 204–207
22.
Zurück zum Zitat Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure generation: A survey. Artificial Intelligence, 229, 139–174.MathSciNet Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure generation: A survey. Artificial Intelligence, 229, 139–174.MathSciNet
23.
Zurück zum Zitat Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.MathSciNet Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.MathSciNet
24.
Zurück zum Zitat Michalak, T. P., Rahwan, T., Elkind, E., Wooldridge, M., & Jennings, N. R. (2016). A hybrid exact algorithm for complete set partitioning. Artificial Intelligence, 230, 14–50.MathSciNet Michalak, T. P., Rahwan, T., Elkind, E., Wooldridge, M., & Jennings, N. R. (2016). A hybrid exact algorithm for complete set partitioning. Artificial Intelligence, 230, 14–50.MathSciNet
25.
Zurück zum Zitat Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.MathSciNet Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.MathSciNet
26.
Zurück zum Zitat Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinatorial auctions. Management Science, 44(7), 1131–1147. Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinatorial auctions. Management Science, 44(7), 1131–1147.
27.
Zurück zum Zitat Yeh, D. (1986). A dynamic programming approach to the complete set partitioning problem. BIT Computer Science and Numerical Mathematics, 26(4), 467–474.MathSciNet Yeh, D. (1986). A dynamic programming approach to the complete set partitioning problem. BIT Computer Science and Numerical Mathematics, 26(4), 467–474.MathSciNet
28.
Zurück zum Zitat Ieong, S., & Shoham, Y. (2005). Marginal contribution nets: a compact representation scheme for coalitional games. In: Proceedings of the 6th ACM conference on electronic commerce (EC’05), pp. 193–202. Ieong, S., & Shoham, Y. (2005). Marginal contribution nets: a compact representation scheme for coalitional games. In: Proceedings of the 6th ACM conference on electronic commerce (EC’05), pp. 193–202.
29.
Zurück zum Zitat Conitzer, V., & Sandholm, T. (2006). Complexity of constructing solutions in the core based on synergies among coalitions. Artificial Intelligence, 170(6–7), 607–619.MathSciNet Conitzer, V., & Sandholm, T. (2006). Complexity of constructing solutions in the core based on synergies among coalitions. Artificial Intelligence, 170(6–7), 607–619.MathSciNet
30.
Zurück zum Zitat Ohta, N., Iwasaki, A., Yokoo, M., Maruono, K., Conitzer, V., & Sandholm, T. (2006). A compact representation scheme for coalitional games in open anonymous environments. In: Proceedings of the 21st national conference on artificial intelligence (AAAI’06), pp. 697–702. Ohta, N., Iwasaki, A., Yokoo, M., Maruono, K., Conitzer, V., & Sandholm, T. (2006). A compact representation scheme for coalitional games in open anonymous environments. In: Proceedings of the 21st national conference on artificial intelligence (AAAI’06), pp. 697–702.
31.
Zurück zum Zitat Shrot, T., Aumann, Y., & Kraus, S. (2010). On agent types in coalition formation problems. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS’10), pp. 757–764. Shrot, T., Aumann, Y., & Kraus, S. (2010). On agent types in coalition formation problems. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS’10), pp. 757–764.
32.
Zurück zum Zitat Bachrach, Y., Kohli, P., Kolmogorov, V., & Zadimoghaddam, M. (2013). Optimal coalition structure generation in cooperative graph games. In: Proceedings of the 27th AAAI conference on artificial intelligence (AAAI’13), pp. 81–87. Bachrach, Y., Kohli, P., Kolmogorov, V., & Zadimoghaddam, M. (2013). Optimal coalition structure generation in cooperative graph games. In: Proceedings of the 27th AAAI conference on artificial intelligence (AAAI’13), pp. 81–87.
33.
Zurück zum Zitat Okimoto, T., Schwind, N., Demirović, E., Inoue, K., & Marquis, P. (2018). Robust coalition structure generation. In: Proceedings of the 21st international conference on principles and practice of multi-agent systems (PRIMA’18), pp. 140–157. Okimoto, T., Schwind, N., Demirović, E., Inoue, K., & Marquis, P. (2018). Robust coalition structure generation. In: Proceedings of the 21st international conference on principles and practice of multi-agent systems (PRIMA’18), pp. 140–157.
34.
Zurück zum Zitat Ismaili, A., Hazon, N., Watanabe, E., Yokoo, M., & Kraus, S. (2019). Complexity and approximations in robust coalition formation via max-min k-partitioning. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems (AAMAS’19), p. 2036-2038 Ismaili, A., Hazon, N., Watanabe, E., Yokoo, M., & Kraus, S. (2019). Complexity and approximations in robust coalition formation via max-min k-partitioning. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems (AAMAS’19), p. 2036-2038
35.
Zurück zum Zitat Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2018). Probabilistic coalition structure generation. In: Proceedings of the 16th international conference on principles of knowledge representation and reasoning (KR’18), pp. 663–664. Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2018). Probabilistic coalition structure generation. In: Proceedings of the 16th international conference on principles of knowledge representation and reasoning (KR’18), pp. 663–664.
36.
Zurück zum Zitat Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2021). On the computation of probabilistic coalition structures. Autonomous Agents and Multi Agent Systems, 35(1), 14. Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2021). On the computation of probabilistic coalition structures. Autonomous Agents and Multi Agent Systems, 35(1), 14.
37.
Zurück zum Zitat Karp, R. M. (1972). Reducibility among combinatorial problems (pp. 85–103). Springer. Karp, R. M. (1972). Reducibility among combinatorial problems (pp. 85–103). Springer.
38.
Zurück zum Zitat Basu, S., Sharma, M., & Ghosh, P. S. (2015). Metaheuristic applications on discrete facility location problems: A survey. OPSEARCH, 52, 530–561.MathSciNet Basu, S., Sharma, M., & Ghosh, P. S. (2015). Metaheuristic applications on discrete facility location problems: A survey. OPSEARCH, 52, 530–561.MathSciNet
39.
Zurück zum Zitat Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering, 62(1), 368–407. Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering, 62(1), 368–407.
40.
Zurück zum Zitat Beraldi, P., & Ruszczynski, A. (2002). The probabilistic set-covering problem. Operations Research, 50(6), 956–967.MathSciNet Beraldi, P., & Ruszczynski, A. (2002). The probabilistic set-covering problem. Operations Research, 50(6), 956–967.MathSciNet
41.
Zurück zum Zitat Chiang, C., Hwang, M., & Liu, Y. (2005). An alternative formulation for certain fuzzy set-covering problems. Mathematical and Computer Modelling, 42(3), 363–365.MathSciNet Chiang, C., Hwang, M., & Liu, Y. (2005). An alternative formulation for certain fuzzy set-covering problems. Mathematical and Computer Modelling, 42(3), 363–365.MathSciNet
42.
Zurück zum Zitat Daskin, M. S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. John Wiley and Sons. Daskin, M. S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. John Wiley and Sons.
43.
Zurück zum Zitat Fischetti, M., & Monaci, M. (2012). Cutting plane versus compact formulations for uncertain (integer) linear programs. Mathematical Programming Computation, 4(3), 239–273.MathSciNet Fischetti, M., & Monaci, M. (2012). Cutting plane versus compact formulations for uncertain (integer) linear programs. Mathematical Programming Computation, 4(3), 239–273.MathSciNet
44.
Zurück zum Zitat Hwang, M., Chiang, C., & Liu, Y. (2004). Solving a fuzzy set-covering problem. Mathematical and Computer Modelling, 40(7), 861–865.MathSciNet Hwang, M., Chiang, C., & Liu, Y. (2004). Solving a fuzzy set-covering problem. Mathematical and Computer Modelling, 40(7), 861–865.MathSciNet
45.
Zurück zum Zitat Lutter, P., Degel, D., Büsing, C., Koster, A. M., & Werners, B. (2017). Improved handling of uncertainty and robustness in set covering problems. European Journal of Operational Research, 263(1), 35–49.MathSciNet Lutter, P., Degel, D., Büsing, C., Koster, A. M., & Werners, B. (2017). Improved handling of uncertainty and robustness in set covering problems. European Journal of Operational Research, 263(1), 35–49.MathSciNet
46.
Zurück zum Zitat Pereira, J., & Averbakh, I. (2013). The robust set covering problem with interval data. Annals of Operations Research, 207(1), 217–235.MathSciNet Pereira, J., & Averbakh, I. (2013). The robust set covering problem with interval data. Annals of Operations Research, 207(1), 217–235.MathSciNet
47.
Zurück zum Zitat Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The expected failure cost case. Transportation Science, 39(3), 400–416. Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The expected failure cost case. Transportation Science, 39(3), 400–416.
48.
Zurück zum Zitat Church, R. L., & Revelle, C. S. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32, 101–118. Church, R. L., & Revelle, C. S. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32, 101–118.
49.
Zurück zum Zitat Berman, O. (1994). The p maximal cover - p partial center problem on networks. European Journal of Operational Research, 72(2), 432–442.MathSciNet Berman, O. (1994). The p maximal cover - p partial center problem on networks. European Journal of Operational Research, 72(2), 432–442.MathSciNet
50.
Zurück zum Zitat Berman, O., & Krass, D. (2002). The generalized maximal covering location problem. Computers & Operations Research, 29(6), 563–581.MathSciNet Berman, O., & Krass, D. (2002). The generalized maximal covering location problem. Computers & Operations Research, 29(6), 563–581.MathSciNet
51.
Zurück zum Zitat Bläser, M. (2003). Computing small partial coverings. Information Processing Letters, 85(6), 327–331.MathSciNet Bläser, M. (2003). Computing small partial coverings. Information Processing Letters, 85(6), 327–331.MathSciNet
52.
Zurück zum Zitat Nozick, L. (2001). The fixed charge facility location problem with coverage restrictions. Transportation Research Part E: Logistics and Transportation Review, 37(4), 281–296. Nozick, L. (2001). The fixed charge facility location problem with coverage restrictions. Transportation Research Part E: Logistics and Transportation Review, 37(4), 281–296.
53.
Zurück zum Zitat Berman, O., Drezner, T., Drezner, Z., & Wesolowsky, G. O. (2009). A defensive maximal covering problem on a network. International Transactions in Operational Reseach, 16(1), 69–86.MathSciNet Berman, O., Drezner, T., Drezner, Z., & Wesolowsky, G. O. (2009). A defensive maximal covering problem on a network. International Transactions in Operational Reseach, 16(1), 69–86.MathSciNet
54.
Zurück zum Zitat Church, R. L., & Scaparra, M. P. (2004). Identifying critical infrastructure: The median and covering facility interdiction problems. Annals of the Association of American Geographers, 94(3), 491–502. Church, R. L., & Scaparra, M. P. (2004). Identifying critical infrastructure: The median and covering facility interdiction problems. Annals of the Association of American Geographers, 94(3), 491–502.
55.
Zurück zum Zitat Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2000). Counterexample-guided abstraction refinement. In: Proceedings of the 12th international conference on computer aided verification (CAV’00), pp. 154–169. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2000). Counterexample-guided abstraction refinement. In: Proceedings of the 12th international conference on computer aided verification (CAV’00), pp. 154–169.
56.
Zurück zum Zitat Janota, M., & Silva, J.P.M. (2011). Abstraction-based algorithm for 2QBF. In: Proceedings of the 14th International conference on theory and applications of satisfiability testing (SAT’11), pp. 230–244. Janota, M., & Silva, J.P.M. (2011). Abstraction-based algorithm for 2QBF. In: Proceedings of the 14th International conference on theory and applications of satisfiability testing (SAT’11), pp. 230–244.
57.
Zurück zum Zitat Janota, M., Klieber, W., Marques-Silva, J., & Clarke, E. M. (2016). Solving QBF with counterexample guided refinement. Artificial Intelligence, 234, 1–25.MathSciNet Janota, M., Klieber, W., Marques-Silva, J., & Clarke, E. M. (2016). Solving QBF with counterexample guided refinement. Artificial Intelligence, 234, 1–25.MathSciNet
58.
Zurück zum Zitat Kleine Büning, H., & Bubeck, U. (2009). Theory of quantified boolean formulas. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of satisfiability, frontiers in artificial intelligence and applications (Vol. 185, pp. 735–760). IOS Press. Kleine Büning, H., & Bubeck, U. (2009). Theory of quantified boolean formulas. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of satisfiability, frontiers in artificial intelligence and applications (Vol. 185, pp. 735–760). IOS Press.
59.
Zurück zum Zitat Goultiaeva, A., Gelder, A.V., & Bacchus, F. (2011). A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI’11), pp. 546–553. Goultiaeva, A., Gelder, A.V., & Bacchus, F. (2011). A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI’11), pp. 546–553.
60.
Zurück zum Zitat Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley. Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.
61.
Zurück zum Zitat Beasley, J. E. (1990). OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 41(11), 1069–1072. Beasley, J. E. (1990). OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 41(11), 1069–1072.
62.
Zurück zum Zitat Bergman, D., & Ciré, A.A. (2016). Multiobjective optimization by decision diagrams. In: Proceedings of the 22nd international conference on principles and practice of constraint programming (CP’16), pp. 86–95. Bergman, D., & Ciré, A.A. (2016). Multiobjective optimization by decision diagrams. In: Proceedings of the 22nd international conference on principles and practice of constraint programming (CP’16), pp. 86–95.
63.
Zurück zum Zitat Stidsen, T. R., Andersen, K. A., & Dammann, B. (2014). A branch and bound algorithm for a class of biobjective mixed integer programs. Management Science, 60(4), 1009–1032. Stidsen, T. R., Andersen, K. A., & Dammann, B. (2014). A branch and bound algorithm for a class of biobjective mixed integer programs. Management Science, 60(4), 1009–1032.
64.
Zurück zum Zitat Gao, C., Yao, X., Weise, T., & Li, J. (2015). An efficient local search heuristic with row weighting for the unicost set covering problem. European Journal of Operational Research, 246(3), 750–761.MathSciNet Gao, C., Yao, X., Weise, T., & Li, J. (2015). An efficient local search heuristic with row weighting for the unicost set covering problem. European Journal of Operational Research, 246(3), 750–761.MathSciNet
65.
Zurück zum Zitat Kadioglu, S., & Sellmann, M. (2009). Dialectic search. In: Proceedings of the 15th International conference on principles and practice of constraint programming (CP’09), pp. 486–500. Kadioglu, S., & Sellmann, M. (2009). Dialectic search. In: Proceedings of the 15th International conference on principles and practice of constraint programming (CP’09), pp. 486–500.
66.
Zurück zum Zitat Musliu, N. (2006). Local search algorithm for unicost set covering problem. In: Proceedings of the 19th international conference on industrial, engineering and other applications of applied intelligent systems, Advances in Applied Artificial Intelligence (IEA/AIE’06), pp. 302–311. Musliu, N. (2006). Local search algorithm for unicost set covering problem. In: Proceedings of the 19th international conference on industrial, engineering and other applications of applied intelligent systems, Advances in Applied Artificial Intelligence (IEA/AIE’06), pp. 302–311.
67.
Zurück zum Zitat Perlin, K. (1985). An image synthesizer. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques (SIGGRAPH’85), pp. 287–296. Perlin, K. (1985). An image synthesizer. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques (SIGGRAPH’85), pp. 287–296.
68.
Zurück zum Zitat Downey, R.G., & Fellows, M.R. (2013) Fundamentals of parameterized complexity. Texts in Computer Science, Springer. Downey, R.G., & Fellows, M.R. (2013) Fundamentals of parameterized complexity. Texts in Computer Science, Springer.
69.
Zurück zum Zitat Jansen, B. M. P. (2017). On structural parameterizations of hitting set: Hitting paths in graphs using 2-SAT. Journal of Graph Algorithms and Applications, 21(2), 219–243.MathSciNet Jansen, B. M. P. (2017). On structural parameterizations of hitting set: Hitting paths in graphs using 2-SAT. Journal of Graph Algorithms and Applications, 21(2), 219–243.MathSciNet
70.
Zurück zum Zitat Rossi, F., van Beek, P., Walsh, T. (eds) (2006). Handbook of constraint programming, foundations of artificial intelligence, vol. 2. Elsevier. Rossi, F., van Beek, P., Walsh, T. (eds) (2006). Handbook of constraint programming, foundations of artificial intelligence, vol. 2. Elsevier.
71.
Zurück zum Zitat Balyo, T., Heule, M. J., Iser, M., Järvisalo, M., & Suda, M. (Eds.). (2022). SAT Competition 2022: Solver and Benchmark Descriptions. Department of Computer Science: University of Helsinki. Balyo, T., Heule, M. J., Iser, M., Järvisalo, M., & Suda, M. (Eds.). (2022). SAT Competition 2022: Solver and Benchmark Descriptions. Department of Computer Science: University of Helsinki.
72.
Zurück zum Zitat Karnouskos, S., & de Holanda, T.N. (2009). Simulation of a smart grid city with software agents. In: Al-Dabass D, Katsikas SK, Koukos I, Zobel RN (eds) Proceedings of the 3rd UKSim european symposium on computer modeling and simulation (EMS’09), pp. 424–429. Karnouskos, S., & de Holanda, T.N. (2009). Simulation of a smart grid city with software agents. In: Al-Dabass D, Katsikas SK, Koukos I, Zobel RN (eds) Proceedings of the 3rd UKSim european symposium on computer modeling and simulation (EMS’09), pp. 424–429.
73.
Zurück zum Zitat Meyer, A.R., & Stockmeyer, L.J. (1972). The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th annual symposium on switching and automata theory (SWAT’72), pp. 125–129. Meyer, A.R., & Stockmeyer, L.J. (1972). The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th annual symposium on switching and automata theory (SWAT’72), pp. 125–129.
Metadaten
Titel
Algorithms for partially robust team formation
verfasst von
Nicolas Schwind
Emir Demirović
Katsumi Inoue
Jean-Marie Lagniez
Publikationsdatum
01.10.2023
Verlag
Springer US
Erschienen in
Autonomous Agents and Multi-Agent Systems / Ausgabe 2/2023
Print ISSN: 1387-2532
Elektronische ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-023-09608-7

Weitere Artikel der Ausgabe 2/2023

Autonomous Agents and Multi-Agent Systems 2/2023 Zur Ausgabe

Premium Partner