Skip to main content
Erschienen in: Journal of Materials Science 9/2024

26.02.2024 | Review

Alkali-activated materials without commercial activators: a review

verfasst von: Yulin Wu, Zhiqing Jia, Xiaoqiang Qi, Wenrui Wang, Siyao Guo

Erschienen in: Journal of Materials Science | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alkali-activated materials (AAM) are crafted to address escalating environmental concerns by utilizing low-carbon industrial waste, thus satisfying the need for innovative alternatives to conventional Portland cement (PC). However, the sustainability profile and cost-effectiveness of AAM depends significantly on the choice of commercial activator, with the high carbon footprint and cost of the activator serving as significant obstacles that limit the utilization of the AAM large-scale construction projects. Some locally available agricultural or industrial alkaline wastes have been researched as activators to activate other materials for AAM preparation, fundamentally eliminating AAM’s activator-related drawbacks. All-waste alkali-activated materials (AWAAM) not only solve the issue of alkaline waste disposal but also exhibit satisfactory mechanical properties, along with environmental and economic advantages. This paper provides a comprehensive overview of the current phase of cementitious materials that do not require additional commercial alkali sources and are prepared entirely from waste materials, which is AWAAM. It describes the sources of alkaline wastes, elucidates the principles of synergistic interactions between these materials, explores the enhancement of AWAAM, and evaluates the cost, environmental impacts, and ionic leaching behaviors of AWAAM. Nevertheless, numerous studies have not examined the durability, leaching of hazardous materials, and workability of AWAAM.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL (2020) Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 1:559–573CrossRefADS Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL (2020) Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 1:559–573CrossRefADS
2.
Zurück zum Zitat Wang Q, Guo H, Yu T, Yuan P, Deng L, Zhang B (2022) Utilization of calcium carbide residue as solid alkali for preparing fly ash-based geopolymers: dependence of compressive strength and microstructure on calcium carbide residue, water content and curing temperature. Materials 15:973PubMedPubMedCentralCrossRefADS Wang Q, Guo H, Yu T, Yuan P, Deng L, Zhang B (2022) Utilization of calcium carbide residue as solid alkali for preparing fly ash-based geopolymers: dependence of compressive strength and microstructure on calcium carbide residue, water content and curing temperature. Materials 15:973PubMedPubMedCentralCrossRefADS
3.
Zurück zum Zitat Andrew RM (2019) Global CO2 emissions from cement production, 1928–2018. Earth Syst Sci Data 11:1675–1710CrossRefADS Andrew RM (2019) Global CO2 emissions from cement production, 1928–2018. Earth Syst Sci Data 11:1675–1710CrossRefADS
4.
Zurück zum Zitat Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data 10:195–217CrossRefADS Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data 10:195–217CrossRefADS
5.
Zurück zum Zitat Hamilton J, Kennard DH, Rapf O, Kockat DJ, Zuhaib DS, Toth DZ, Barrett M, Milne C (2022) Global status report for buildings and construction: towards a zero-emission, efficient and resilient buildings and construction sector, United Nations Environment Programme, United Nations, Nairobi, Kenya Hamilton J, Kennard DH, Rapf O, Kockat DJ, Zuhaib DS, Toth DZ, Barrett M, Milne C (2022) Global status report for buildings and construction: towards a zero-emission, efficient and resilient buildings and construction sector, United Nations Environment Programme, United Nations, Nairobi, Kenya
6.
Zurück zum Zitat Habert G (2014) 10-Assessing the environmental impact of conventional and ‘green’ cement production. In: Pacheco-Torgal F et al (eds) Eco-efficient construction and building materials. Woodhead Publishing, Sawston, pp 199–238CrossRef Habert G (2014) 10-Assessing the environmental impact of conventional and ‘green’ cement production. In: Pacheco-Torgal F et al (eds) Eco-efficient construction and building materials. Woodhead Publishing, Sawston, pp 199–238CrossRef
7.
Zurück zum Zitat Xue C, Sirivivatnanon V, Nezhad A, Zhao Q (2023) Comparisons of alkali-activated binder concrete (ABC) with OPC concrete-a review. Cem Concr Compos 135:104851CrossRef Xue C, Sirivivatnanon V, Nezhad A, Zhao Q (2023) Comparisons of alkali-activated binder concrete (ABC) with OPC concrete-a review. Cem Concr Compos 135:104851CrossRef
8.
Zurück zum Zitat Bai Y, Guo W, Zhang Y, Xue C, Xu Z, Gao Q, Xiao C, Zhao Q (2022) Low carbon binder preparation from slag-red mud activated by MSWI fly ash-carbide slag: hydration characteristics and heavy metals’ solidification behavior. J Cleaner Prod 374:134007CrossRef Bai Y, Guo W, Zhang Y, Xue C, Xu Z, Gao Q, Xiao C, Zhao Q (2022) Low carbon binder preparation from slag-red mud activated by MSWI fly ash-carbide slag: hydration characteristics and heavy metals’ solidification behavior. J Cleaner Prod 374:134007CrossRef
9.
Zurück zum Zitat Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992CrossRef Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992CrossRef
10.
Zurück zum Zitat Ahmad S, Bahraq AA, Shaqraa AA, Khalid HR, Al-Gadhib AH, Maslehuddin M (2022) Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: an experimental and statistical study. Case Stud Constr Mater 16:e00915 Ahmad S, Bahraq AA, Shaqraa AA, Khalid HR, Al-Gadhib AH, Maslehuddin M (2022) Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: an experimental and statistical study. Case Stud Constr Mater 16:e00915
11.
Zurück zum Zitat Abdulkareem M, Havukainen J, Nuortila-Jokinen J, Horttanainen M (2021) Environmental and economic perspective of waste-derived activators on alkali-activated mortars. J Clean Prod 280:124651CrossRef Abdulkareem M, Havukainen J, Nuortila-Jokinen J, Horttanainen M (2021) Environmental and economic perspective of waste-derived activators on alkali-activated mortars. J Clean Prod 280:124651CrossRef
12.
Zurück zum Zitat Heah CY, Kamarudin H, Mustafa Al Bakri AM, Bnhussain M, Luqman M, Khairul Nizar I, Ruzaidi CM, Liew YM (2012) Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr Build Mater 35:912–922CrossRef Heah CY, Kamarudin H, Mustafa Al Bakri AM, Bnhussain M, Luqman M, Khairul Nizar I, Ruzaidi CM, Liew YM (2012) Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr Build Mater 35:912–922CrossRef
13.
Zurück zum Zitat Lin S, Zheng Y, Liu W, Ma H, Rao F, Yang L, Zhong S (2023) Consolidation of phosphorus tailings and soluble fluorine & phosphorus with calcium carbide residue-mirabilite waste as a green alkali activator. Case Stud Constr Mater 18:e01779 Lin S, Zheng Y, Liu W, Ma H, Rao F, Yang L, Zhong S (2023) Consolidation of phosphorus tailings and soluble fluorine & phosphorus with calcium carbide residue-mirabilite waste as a green alkali activator. Case Stud Constr Mater 18:e01779
14.
Zurück zum Zitat Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Ann Rev Mater Res 44:299–327CrossRefADS Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Ann Rev Mater Res 44:299–327CrossRefADS
15.
Zurück zum Zitat Sun Z, Tang Q, Fan X, Gan M, Chen X, Ji Z, Huang X (2022) Self-compacting alkali-activated materials: progress and perspectives. Molecules 27:81CrossRef Sun Z, Tang Q, Fan X, Gan M, Chen X, Ji Z, Huang X (2022) Self-compacting alkali-activated materials: progress and perspectives. Molecules 27:81CrossRef
16.
Zurück zum Zitat Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48CrossRef Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48CrossRef
17.
Zurück zum Zitat Mendes BC, Pedroti LG, Vieira CMF, Marvila M, Azevedo ARG, Franco de Carvalho JM, Ribeiro JCL (2021) Application of eco-friendly alternative activators in alkali-activated materials: a review. J Build Eng 35:102010CrossRef Mendes BC, Pedroti LG, Vieira CMF, Marvila M, Azevedo ARG, Franco de Carvalho JM, Ribeiro JCL (2021) Application of eco-friendly alternative activators in alkali-activated materials: a review. J Build Eng 35:102010CrossRef
18.
Zurück zum Zitat Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26CrossRef Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26CrossRef
19.
Zurück zum Zitat Tong KT, Vinai R, Soutsos MN (2018) Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod 201:272–286CrossRef Tong KT, Vinai R, Soutsos MN (2018) Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod 201:272–286CrossRef
20.
Zurück zum Zitat Guo S, Wu Y, Jia Z, Qi X, Wang W (2023) Sodium-based activators in alkali- activated materials: classification and comparison. J Build Eng 70:106397CrossRef Guo S, Wu Y, Jia Z, Qi X, Wang W (2023) Sodium-based activators in alkali- activated materials: classification and comparison. J Build Eng 70:106397CrossRef
21.
Zurück zum Zitat Alnahhal MF, Kim T, Hajimohammadi A (2021) Waste-derived activators for alkali-activated materials: a review. Cem Concr Compos 118:103980CrossRef Alnahhal MF, Kim T, Hajimohammadi A (2021) Waste-derived activators for alkali-activated materials: a review. Cem Concr Compos 118:103980CrossRef
22.
Zurück zum Zitat Samarakoon MH, Ranjith PG, Duan WH, De Silva VRS (2020) Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: a comparative study. Cem Concr Compos 112:103679CrossRef Samarakoon MH, Ranjith PG, Duan WH, De Silva VRS (2020) Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: a comparative study. Cem Concr Compos 112:103679CrossRef
23.
Zurück zum Zitat Adesanya E, Perumal P, Luukkonen T, Yliniemi J, Ohenoja K, Kinnunen P, Illikainen M (2021) Opportunities to improve sustainability of alkali-activated materials: a review of side-stream based activators. J Clean Prod 286:125558CrossRef Adesanya E, Perumal P, Luukkonen T, Yliniemi J, Ohenoja K, Kinnunen P, Illikainen M (2021) Opportunities to improve sustainability of alkali-activated materials: a review of side-stream based activators. J Clean Prod 286:125558CrossRef
24.
Zurück zum Zitat Provis JL (2009) 4-activating solution chemistry for geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers. Woodhead Publishing, Sawston, pp 50–71CrossRef Provis JL (2009) 4-activating solution chemistry for geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers. Woodhead Publishing, Sawston, pp 50–71CrossRef
25.
Zurück zum Zitat Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34CrossRef Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34CrossRef
27.
Zurück zum Zitat Elzeadani M, Bompa DV, Elghazouli AY (2022) One part alkali activated materials: a state-of-the-art review. J Build Eng 57:104871CrossRef Elzeadani M, Bompa DV, Elghazouli AY (2022) One part alkali activated materials: a state-of-the-art review. J Build Eng 57:104871CrossRef
28.
Zurück zum Zitat Ren B, Zhao Y, Bai H, Kang S, Zhang T, Song S (2021) Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere 267:128900PubMedCrossRef Ren B, Zhao Y, Bai H, Kang S, Zhang T, Song S (2021) Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere 267:128900PubMedCrossRef
29.
Zurück zum Zitat Komkova A, Habert G (2023) Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Constr Build Mater 363:129032CrossRef Komkova A, Habert G (2023) Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Constr Build Mater 363:129032CrossRef
30.
Zurück zum Zitat Wang Q, Yang J, Yan P (2013) Cementitious properties of super-fine steel slag. Powder Technol 245:35–39CrossRef Wang Q, Yang J, Yan P (2013) Cementitious properties of super-fine steel slag. Powder Technol 245:35–39CrossRef
31.
Zurück zum Zitat Yang J, Zhang Q, He X, Su Y, Zeng J, Xiong L, Zeng L, Yu X, Tan H (2022) Low-carbon wet-ground fly ash geopolymer activated by single calcium carbide slag. Constr Build Mater 353:129084CrossRef Yang J, Zhang Q, He X, Su Y, Zeng J, Xiong L, Zeng L, Yu X, Tan H (2022) Low-carbon wet-ground fly ash geopolymer activated by single calcium carbide slag. Constr Build Mater 353:129084CrossRef
32.
Zurück zum Zitat Gong X, Zhang T, Zhang J, Wang Z, Liu J, Cao J, Wang C (2022) Recycling and utilization of calcium carbide slag-current status and new opportunities. Renew Sustain Energy Rev 159:112133CrossRef Gong X, Zhang T, Zhang J, Wang Z, Liu J, Cao J, Wang C (2022) Recycling and utilization of calcium carbide slag-current status and new opportunities. Renew Sustain Energy Rev 159:112133CrossRef
33.
Zurück zum Zitat Wang Q, Sun S, Yao G, Wang Z, Lyu X (2022) Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum. Constr Build Mater 340:127735CrossRef Wang Q, Sun S, Yao G, Wang Z, Lyu X (2022) Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum. Constr Build Mater 340:127735CrossRef
34.
Zurück zum Zitat Wang Q, Li J, Zhang J, Wu P, Lyu X, Hu S, Qiu J, Liu X, Yu H (2021) Reuse of the soda sludge dealt with water washing as a supplementary material for the synthesis of clinker binders. J Clean Prod 295:126433CrossRef Wang Q, Li J, Zhang J, Wu P, Lyu X, Hu S, Qiu J, Liu X, Yu H (2021) Reuse of the soda sludge dealt with water washing as a supplementary material for the synthesis of clinker binders. J Clean Prod 295:126433CrossRef
35.
Zurück zum Zitat Cristelo N, Fernández-Jiménez A, Castro F, Fernandes L, Tavares P (2019) Sustainable alkaline activation of fly ash, aluminium anodising sludge and glass powder blends with a recycled alkaline cleaning solution. Constr Build Mater 204:609–620CrossRef Cristelo N, Fernández-Jiménez A, Castro F, Fernandes L, Tavares P (2019) Sustainable alkaline activation of fly ash, aluminium anodising sludge and glass powder blends with a recycled alkaline cleaning solution. Constr Build Mater 204:609–620CrossRef
36.
Zurück zum Zitat Moraes Pinheiro SM, Font A, Soriano L, Tashima MM, Monzó J, Borrachero MV, Payá J (2018) Olive-stone biomass ash (OBA): an alternative alkaline source for the blast furnace slag activation. Constr Build Mater 178:327–338CrossRef Moraes Pinheiro SM, Font A, Soriano L, Tashima MM, Monzó J, Borrachero MV, Payá J (2018) Olive-stone biomass ash (OBA): an alternative alkaline source for the blast furnace slag activation. Constr Build Mater 178:327–338CrossRef
37.
Zurück zum Zitat Shan C, Jing Z, Pu L, Pan X (2012) Solidification of MSWI ash at low temperature of 100 °C. Ind Eng Chem Res 51:9540–9545CrossRef Shan C, Jing Z, Pu L, Pan X (2012) Solidification of MSWI ash at low temperature of 100 °C. Ind Eng Chem Res 51:9540–9545CrossRef
38.
Zurück zum Zitat Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem Concr Res 40:1341–1349CrossRef Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem Concr Res 40:1341–1349CrossRef
39.
Zurück zum Zitat Lemougna PN, Nzeukou A, Aziwo B, Tchamba AB, Wang K-T, Melo UC, Cui X-M (2020) Effect of slag on the improvement of setting time and compressive strength of low reactive volcanic ash geopolymers synthetized at room temperature. Mater Chem Phys 239:122077CrossRef Lemougna PN, Nzeukou A, Aziwo B, Tchamba AB, Wang K-T, Melo UC, Cui X-M (2020) Effect of slag on the improvement of setting time and compressive strength of low reactive volcanic ash geopolymers synthetized at room temperature. Mater Chem Phys 239:122077CrossRef
40.
Zurück zum Zitat Wang K, Lemougna PN, Tang Q, Li W, He Y, Cui X (2017) Low temperature depolymerization and polycondensation of a slag-based inorganic polymer. Ceram Int 43:9067–9076CrossRef Wang K, Lemougna PN, Tang Q, Li W, He Y, Cui X (2017) Low temperature depolymerization and polycondensation of a slag-based inorganic polymer. Ceram Int 43:9067–9076CrossRef
41.
Zurück zum Zitat Fořt J, Mildner M, Keppert M, Abed M, Černý R (2023) Potential of industrial waste as alternative alkaline activator for development of eco-efficient mortars. Case Stud Constr Mater 18:e01716 Fořt J, Mildner M, Keppert M, Abed M, Černý R (2023) Potential of industrial waste as alternative alkaline activator for development of eco-efficient mortars. Case Stud Constr Mater 18:e01716
42.
Zurück zum Zitat Yang J, Zeng J, He X, Zhang Y, Su Y, Tan H (2022) Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Constr Build Mater 330:127218CrossRef Yang J, Zeng J, He X, Zhang Y, Su Y, Tan H (2022) Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Constr Build Mater 330:127218CrossRef
43.
Zurück zum Zitat Yao X, Wang W, Liu M, Yao Y, Wu S (2019) Synergistic use of industrial solid waste mixtures to prepare ready-to-use lightweight porous concrete. J Clean Prod 211:1034–1043CrossRef Yao X, Wang W, Liu M, Yao Y, Wu S (2019) Synergistic use of industrial solid waste mixtures to prepare ready-to-use lightweight porous concrete. J Clean Prod 211:1034–1043CrossRef
44.
Zurück zum Zitat Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) 2-an overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F et al (eds) Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, Oxford, pp 19–47CrossRef Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) 2-an overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F et al (eds) Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, Oxford, pp 19–47CrossRef
45.
Zurück zum Zitat Hu Y, Tang Z, Li W, Li Y, Tam VWY (2019) Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr Build Mater 226:139–151CrossRef Hu Y, Tang Z, Li W, Li Y, Tam VWY (2019) Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr Build Mater 226:139–151CrossRef
46.
Zurück zum Zitat Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130CrossRef Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130CrossRef
47.
Zurück zum Zitat Zhao J, Tong L, Li B, Chen T, Wang C, Yang G, Zheng Y (2021) Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment. J Clean Prod 307:127085CrossRef Zhao J, Tong L, Li B, Chen T, Wang C, Yang G, Zheng Y (2021) Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment. J Clean Prod 307:127085CrossRef
48.
Zurück zum Zitat Vinai R, Soutsos M (2019) Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem Concr Res 116:45–56CrossRef Vinai R, Soutsos M (2019) Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem Concr Res 116:45–56CrossRef
49.
Zurück zum Zitat Cheah CB, Tan LE, Ramli M (2021) Recent advances in slag-based binder and chemical activators derived from industrial by-products–a review. Constr Build Mater 272:121657CrossRef Cheah CB, Tan LE, Ramli M (2021) Recent advances in slag-based binder and chemical activators derived from industrial by-products–a review. Constr Build Mater 272:121657CrossRef
50.
Zurück zum Zitat Li Z, Shen A, Yang X, Guo Y, Liu Y (2023) A review of steel slag as a substitute for natural aggregate applied to cement concrete. Road Mater Pavement Des 24:537–559CrossRef Li Z, Shen A, Yang X, Guo Y, Liu Y (2023) A review of steel slag as a substitute for natural aggregate applied to cement concrete. Road Mater Pavement Des 24:537–559CrossRef
51.
Zurück zum Zitat Li Y, Ni W, Gao W, Zhang Y, Yan Q, Zhang S (2019) Corrosion evaluation of steel slag based on a leaching solution test. Energy Sources Part A 41:790–801CrossRef Li Y, Ni W, Gao W, Zhang Y, Yan Q, Zhang S (2019) Corrosion evaluation of steel slag based on a leaching solution test. Energy Sources Part A 41:790–801CrossRef
52.
Zurück zum Zitat Nunes VA, Borges PHR (2021) Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Constr Build Mater 281:122605CrossRef Nunes VA, Borges PHR (2021) Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Constr Build Mater 281:122605CrossRef
53.
Zurück zum Zitat Adesanya E, Ohenoja K, Di Maria A, Kinnunen P, Illikainen M (2020) Alternative alkali-activator from steel-making waste for one-part alkali-activated slag. J Cleaner Prod 274:123020CrossRef Adesanya E, Ohenoja K, Di Maria A, Kinnunen P, Illikainen M (2020) Alternative alkali-activator from steel-making waste for one-part alkali-activated slag. J Cleaner Prod 274:123020CrossRef
54.
Zurück zum Zitat Guo W, Zhang Z, Bai Y, Zhao G, Sang Z, Zhao Q (2021) Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Constr Build Mater 291:123367CrossRef Guo W, Zhang Z, Bai Y, Zhao G, Sang Z, Zhao Q (2021) Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Constr Build Mater 291:123367CrossRef
55.
Zurück zum Zitat Ma Z, Liao H, Cheng F (2021) Synergistic mechanisms of steelmaking slag coupled with carbide slag for CO2 mineralization. Int J Greenh Gas Control 105:103229CrossRef Ma Z, Liao H, Cheng F (2021) Synergistic mechanisms of steelmaking slag coupled with carbide slag for CO2 mineralization. Int J Greenh Gas Control 105:103229CrossRef
56.
Zurück zum Zitat Panda I, Jain S, Das SK, Jayabalan R (2017) Characterization of red mud as a structural fill and embankment material using bioremediation. Int Biodeterior Biodegrad 119:368–376CrossRef Panda I, Jain S, Das SK, Jayabalan R (2017) Characterization of red mud as a structural fill and embankment material using bioremediation. Int Biodeterior Biodegrad 119:368–376CrossRef
57.
Zurück zum Zitat Wang Q, Zhang T, Wu P, Lyu X (2022) Recovered soda residue as alkaline activator of furnace slag: geopolymer prepared from furnace slag incorporated with soda residue and its reuse in composite cement. Clean Technol Environ Policy Wang Q, Zhang T, Wu P, Lyu X (2022) Recovered soda residue as alkaline activator of furnace slag: geopolymer prepared from furnace slag incorporated with soda residue and its reuse in composite cement. Clean Technol Environ Policy
58.
Zurück zum Zitat Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105:40–76CrossRef Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105:40–76CrossRef
59.
Zurück zum Zitat Qian G, Yang X, Dong S, Zhou J, Sun Y, Xu Y, Liu Q (2009) Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices. J Hazard Mater 165:955–960PubMedCrossRef Qian G, Yang X, Dong S, Zhou J, Sun Y, Xu Y, Liu Q (2009) Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices. J Hazard Mater 165:955–960PubMedCrossRef
60.
Zurück zum Zitat Joseph AM, Snellings R, Van den Heede P, Matthys S, De Belie N (2018) The use of municipal solid waste incineration ash in various building materials: a belgian point of view. Materials 11:141PubMedPubMedCentralCrossRefADS Joseph AM, Snellings R, Van den Heede P, Matthys S, De Belie N (2018) The use of municipal solid waste incineration ash in various building materials: a belgian point of view. Materials 11:141PubMedPubMedCentralCrossRefADS
61.
Zurück zum Zitat Li Y, Lei W, Zhang Q, Yang Q, He X, Su Y, Tan H, Liu J, Wang G (2022) Synergistic effects of steel slag and wet grinding on ambient cured ground granulated blast furnace slag activated by sodium sulfate. Constr Build Mater 349:128661CrossRef Li Y, Lei W, Zhang Q, Yang Q, He X, Su Y, Tan H, Liu J, Wang G (2022) Synergistic effects of steel slag and wet grinding on ambient cured ground granulated blast furnace slag activated by sodium sulfate. Constr Build Mater 349:128661CrossRef
62.
Zurück zum Zitat Zhang M, Li K, Ni W, Zhang S, Liu Z, Wang K, Wei X, Yu Y (2022) Preparation of mine backfilling from steel slag-based non-clinker combined with ultra-fine tailing. Constr Build Mater 320:126248CrossRef Zhang M, Li K, Ni W, Zhang S, Liu Z, Wang K, Wei X, Yu Y (2022) Preparation of mine backfilling from steel slag-based non-clinker combined with ultra-fine tailing. Constr Build Mater 320:126248CrossRef
63.
Zurück zum Zitat Guo J, Bao Y, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manag 78:318–330PubMedCrossRef Guo J, Bao Y, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manag 78:318–330PubMedCrossRef
64.
Zurück zum Zitat Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16:230–236CrossRef Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16:230–236CrossRef
65.
Zurück zum Zitat Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801CrossRef Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801CrossRef
66.
Zurück zum Zitat Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags—a review. Resour Conserv Recycl 146:244–255CrossRef Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags—a review. Resour Conserv Recycl 146:244–255CrossRef
67.
Zurück zum Zitat Zhang G-H, Chou K-C (2015) Deoxidation of molten steel by aluminum. J Iron Steel Res Int 22:905–908CrossRef Zhang G-H, Chou K-C (2015) Deoxidation of molten steel by aluminum. J Iron Steel Res Int 22:905–908CrossRef
68.
Zurück zum Zitat Zhao J, Li Z, Wang D, Yan P, Luo L, Zhang H, Zhang H, Gu X (2023) Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder. Constr Build Mater 366:130101CrossRef Zhao J, Li Z, Wang D, Yan P, Luo L, Zhang H, Zhang H, Gu X (2023) Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder. Constr Build Mater 366:130101CrossRef
69.
Zurück zum Zitat Mason B (1994) The constitution of some open-heart slag Mason B (1994) The constitution of some open-heart slag
70.
Zurück zum Zitat Wang Q, Su H-L, Li C-M, Lyu X-J (2023) Recycling of steel slag as an alkali activator for blast furnace slag: geopolymer preparation and its application in composite cement. Clean Technol Environ Policy 25:1617–1629CrossRef Wang Q, Su H-L, Li C-M, Lyu X-J (2023) Recycling of steel slag as an alkali activator for blast furnace slag: geopolymer preparation and its application in composite cement. Clean Technol Environ Policy 25:1617–1629CrossRef
71.
Zurück zum Zitat Zhao J, Wang D, Yan P, Zhang D, Wang H (2016) Self-cementitious property of steel slag powder blended with gypsum. Constr Build Mater 113:835–842CrossRef Zhao J, Wang D, Yan P, Zhang D, Wang H (2016) Self-cementitious property of steel slag powder blended with gypsum. Constr Build Mater 113:835–842CrossRef
72.
Zurück zum Zitat Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314PubMedCrossRef Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314PubMedCrossRef
73.
Zurück zum Zitat Zhao Y, Zhan J, Liu G, Zheng M, Jin R, Yang L, Hao L, Wu X, Zhang X, Wang P (2017) Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material. J Hazard Mater 330:135–141PubMedCrossRef Zhao Y, Zhan J, Liu G, Zheng M, Jin R, Yang L, Hao L, Wu X, Zhang X, Wang P (2017) Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material. J Hazard Mater 330:135–141PubMedCrossRef
74.
Zurück zum Zitat Wang W, Hua Y, Li S, Yan W, Zhang W-X (2016) Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a comparative study. Chem Eng J 304:79–88CrossRef Wang W, Hua Y, Li S, Yan W, Zhang W-X (2016) Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a comparative study. Chem Eng J 304:79–88CrossRef
75.
Zurück zum Zitat Fang D, Huang L, Fang Z, Zhang Q, Shen Q, Li Y, Xu X, Ji F (2018) Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater. Chem Eng J 354:1–11CrossRef Fang D, Huang L, Fang Z, Zhang Q, Shen Q, Li Y, Xu X, Ji F (2018) Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater. Chem Eng J 354:1–11CrossRef
76.
Zurück zum Zitat Zou J, Guo C, Zhou X, Sun Y, Yang Z (2018) Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag. Colloids Surf A 538:825–833CrossRef Zou J, Guo C, Zhou X, Sun Y, Yang Z (2018) Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag. Colloids Surf A 538:825–833CrossRef
77.
Zurück zum Zitat Ma Y, Nie Q, Xiao R, Hu W, Han B, Polaczyk PA, Huang B (2020) Experimental investigation of utilizing waste flue gas desulfurized gypsum as backfill materials. Constr Build Mater 245:118393CrossRef Ma Y, Nie Q, Xiao R, Hu W, Han B, Polaczyk PA, Huang B (2020) Experimental investigation of utilizing waste flue gas desulfurized gypsum as backfill materials. Constr Build Mater 245:118393CrossRef
78.
Zurück zum Zitat Song K, Jang Y-N, Kim W, Lee MG, Shin D, Bang J-H, Jeon CW, Chae SC (2012) Precipitation of calcium carbonate during direct aqueous carbonation of flue gas desulfurization gypsum. Chem Eng J 213:251–258CrossRef Song K, Jang Y-N, Kim W, Lee MG, Shin D, Bang J-H, Jeon CW, Chae SC (2012) Precipitation of calcium carbonate during direct aqueous carbonation of flue gas desulfurization gypsum. Chem Eng J 213:251–258CrossRef
79.
Zurück zum Zitat Noolu V, Mudavath H, Pillai RJ, Yantrapalli SK (2019) Permanent deformation behaviour of black cotton soil treated with calcium carbide residue. Constr Build Mater 223:441–449CrossRef Noolu V, Mudavath H, Pillai RJ, Yantrapalli SK (2019) Permanent deformation behaviour of black cotton soil treated with calcium carbide residue. Constr Build Mater 223:441–449CrossRef
80.
Zurück zum Zitat Yi Y, Zheng X, Liu S, Al-Tabbaa A (2015) Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil. Appl Clay Sci 111:21–26CrossRef Yi Y, Zheng X, Liu S, Al-Tabbaa A (2015) Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil. Appl Clay Sci 111:21–26CrossRef
81.
Zurück zum Zitat Li W, Yi Y (2023) Estimating the optimum addition of carbide sludge for enhancing strength development of ground-granulated blast furnace slag-treated slurry based on initial pH. J Mater Civ Eng 35:04022400CrossRef Li W, Yi Y (2023) Estimating the optimum addition of carbide sludge for enhancing strength development of ground-granulated blast furnace slag-treated slurry based on initial pH. J Mater Civ Eng 35:04022400CrossRef
82.
Zurück zum Zitat Zhu X, Tang D, Yang K, Zhang Z, Li Q, Pan Q, Yang C (2018) Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr Build Mater 175:467–482CrossRef Zhu X, Tang D, Yang K, Zhang Z, Li Q, Pan Q, Yang C (2018) Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr Build Mater 175:467–482CrossRef
83.
Zurück zum Zitat Shi C, Day RL (2001) Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res 31:813–818CrossRef Shi C, Day RL (2001) Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res 31:813–818CrossRef
84.
Zurück zum Zitat Yang K-H, Cho A-R, Song J-K, Nam S-H (2012) Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater 29:410–419CrossRef Yang K-H, Cho A-R, Song J-K, Nam S-H (2012) Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater 29:410–419CrossRef
85.
Zurück zum Zitat Yang K-H, Sim J-I, Nam S-H (2010) Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Constr Build Mater 24:241–251CrossRef Yang K-H, Sim J-I, Nam S-H (2010) Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Constr Build Mater 24:241–251CrossRef
86.
Zurück zum Zitat Baghabra Al-Amoudi OS, Ahmad S, Maslehuddin M, Khan SMS (2022) Lime-activation of natural pozzolan for use as supplementary cementitious material in concrete. Ain Shams Eng J 13:101602CrossRef Baghabra Al-Amoudi OS, Ahmad S, Maslehuddin M, Khan SMS (2022) Lime-activation of natural pozzolan for use as supplementary cementitious material in concrete. Ain Shams Eng J 13:101602CrossRef
87.
Zurück zum Zitat Li W, Yi Y (2020) Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Constr Build Mater 238:117713CrossRef Li W, Yi Y (2020) Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Constr Build Mater 238:117713CrossRef
88.
89.
Zurück zum Zitat Makaratat N, Jaturapitakkul C, Namarak C, Sata V (2011) Effects of binder and CaCl2 contents on the strength of calcium carbide residue-fly ash concrete. Cem Concr Compos 33:436–443CrossRef Makaratat N, Jaturapitakkul C, Namarak C, Sata V (2011) Effects of binder and CaCl2 contents on the strength of calcium carbide residue-fly ash concrete. Cem Concr Compos 33:436–443CrossRef
90.
Zurück zum Zitat Alam S, Das SK, Rao BH (2019) Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Constr Build Mater 211:932–942CrossRef Alam S, Das SK, Rao BH (2019) Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Constr Build Mater 211:932–942CrossRef
91.
Zurück zum Zitat Zhang R, Zheng S, Ma S, Zhang Y (2011) Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. J Hazard Mater 189:827–835PubMedCrossRef Zhang R, Zheng S, Ma S, Zhang Y (2011) Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. J Hazard Mater 189:827–835PubMedCrossRef
92.
Zurück zum Zitat Patangia J, Saravanan TJ, Kabeer KISA, Bisht K (2023) Study on the utilization of red mud (bauxite waste) as a supplementary cementitious material: pathway to attaining sustainable development goals. Constr Build Mater 375:131005CrossRef Patangia J, Saravanan TJ, Kabeer KISA, Bisht K (2023) Study on the utilization of red mud (bauxite waste) as a supplementary cementitious material: pathway to attaining sustainable development goals. Constr Build Mater 375:131005CrossRef
93.
Zurück zum Zitat Liu X, Zhang N, Sun H, Zhang J, Li L (2011) Structural investigation relating to the cementitious activity of bauxite residue—red mud. Cem Concr Res 41:847–853CrossRef Liu X, Zhang N, Sun H, Zhang J, Li L (2011) Structural investigation relating to the cementitious activity of bauxite residue—red mud. Cem Concr Res 41:847–853CrossRef
94.
Zurück zum Zitat Liang X, Ji Y (2021) Experimental study on durability of red mud-blast furnace slag geopolymer mortar. Constr Build Mater 267:120942CrossRef Liang X, Ji Y (2021) Experimental study on durability of red mud-blast furnace slag geopolymer mortar. Constr Build Mater 267:120942CrossRef
95.
Zurück zum Zitat Tian K, Wang Y, Hong S, Zhang J, Hou D, Dong B, Xing F (2021) Alkali-activated artificial aggregates fabricated by red mud and fly ash: performance and microstructure. Constr Build Mater 281:122552CrossRef Tian K, Wang Y, Hong S, Zhang J, Hou D, Dong B, Xing F (2021) Alkali-activated artificial aggregates fabricated by red mud and fly ash: performance and microstructure. Constr Build Mater 281:122552CrossRef
96.
Zurück zum Zitat Zhang T-A, Wang Y, Lu G, Liu Y, Zhang W, Zhao Q (2018) Comprehensive utilization of red mud: current research status and a possible way forward for non-hazardous treatment. In: Light metals 2018, Springer International Publishing, Cham Zhang T-A, Wang Y, Lu G, Liu Y, Zhang W, Zhao Q (2018) Comprehensive utilization of red mud: current research status and a possible way forward for non-hazardous treatment. In: Light metals 2018, Springer International Publishing, Cham
97.
Zurück zum Zitat Choo H, Lim S, Lee W, Lee C (2016) Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr Build Mater 125:21–28CrossRef Choo H, Lim S, Lee W, Lee C (2016) Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr Build Mater 125:21–28CrossRef
98.
Zurück zum Zitat Ke X, Bernal SA, Ye N, Provis JL, Yang J (2015) One-part geopolymers based on thermally treated red Mud/NaOH blends. J Am Ceram Soc 98:5–11CrossRef Ke X, Bernal SA, Ye N, Provis JL, Yang J (2015) One-part geopolymers based on thermally treated red Mud/NaOH blends. J Am Ceram Soc 98:5–11CrossRef
99.
Zurück zum Zitat Jiang S, Zhang Y, Li Z (2019) A new industrial process of NaHCO3 and its crystallization kinetics by using the common ion effect of Na2CO3. Chem Eng J 360:740–749CrossRef Jiang S, Zhang Y, Li Z (2019) A new industrial process of NaHCO3 and its crystallization kinetics by using the common ion effect of Na2CO3. Chem Eng J 360:740–749CrossRef
100.
Zurück zum Zitat Zeller AF (1990) Soda ash and the glass industry. In: Proceedings of the 50th conference on glass problems: ceramic engineering and science proceedings, pp 161–174 Zeller AF (1990) Soda ash and the glass industry. In: Proceedings of the 50th conference on glass problems: ceramic engineering and science proceedings, pp 161–174
101.
Zurück zum Zitat Chazelas E, Deschasaux M, Srour B, Kesse-Guyot E, Julia C, Alles B, Druesne-Pecollo N, Galan P, Hercberg S, Latino-Martel P, Esseddik Y, Szabo F, Slamich P, Gigandet S, Touvier M (2020) Food additives: distribution and co-occurrence in 126,000 food products of the French market. Sci Rep 10:3980PubMedPubMedCentralCrossRefADS Chazelas E, Deschasaux M, Srour B, Kesse-Guyot E, Julia C, Alles B, Druesne-Pecollo N, Galan P, Hercberg S, Latino-Martel P, Esseddik Y, Szabo F, Slamich P, Gigandet S, Touvier M (2020) Food additives: distribution and co-occurrence in 126,000 food products of the French market. Sci Rep 10:3980PubMedPubMedCentralCrossRefADS
102.
Zurück zum Zitat Zięba J, Rzepka P, Olek BS (2021) Strength and compressibility of ammonia-soda residue from the solvay sodium plant. Appl Sci 11:11305CrossRef Zięba J, Rzepka P, Olek BS (2021) Strength and compressibility of ammonia-soda residue from the solvay sodium plant. Appl Sci 11:11305CrossRef
103.
Zurück zum Zitat Zhao X, Liu C, Zuo L, Wang L, Zhu Q, Liu Y, Zhou B (2020) Synthesis and characterization of fly ash geopolymer paste for goaf backfill: reuse of soda residue. J Clean Prod 260:121045CrossRef Zhao X, Liu C, Zuo L, Wang L, Zhu Q, Liu Y, Zhou B (2020) Synthesis and characterization of fly ash geopolymer paste for goaf backfill: reuse of soda residue. J Clean Prod 260:121045CrossRef
104.
Zurück zum Zitat He J, Wang X-Q, Su Y, Li Z-X, Shi X-K (2019) Shear strength of stabilized clay treated with soda residue and ground granulated blast furnace slag. J Mater Civ Eng 31:06018029CrossRef He J, Wang X-Q, Su Y, Li Z-X, Shi X-K (2019) Shear strength of stabilized clay treated with soda residue and ground granulated blast furnace slag. J Mater Civ Eng 31:06018029CrossRef
105.
Zurück zum Zitat Lin Y, Xu D, Zhao X (2021) Properties and hydration mechanism of soda residue-activated ground granulated blast furnace slag cementitious materials. Materials 14:2883PubMedPubMedCentralCrossRefADS Lin Y, Xu D, Zhao X (2021) Properties and hydration mechanism of soda residue-activated ground granulated blast furnace slag cementitious materials. Materials 14:2883PubMedPubMedCentralCrossRefADS
106.
Zurück zum Zitat Bilginer A, Canbek O, Erdoğan ST (2020) Activation of blast furnace slag with soda production waste. J Mater Civ Eng 32:04019316CrossRef Bilginer A, Canbek O, Erdoğan ST (2020) Activation of blast furnace slag with soda production waste. J Mater Civ Eng 32:04019316CrossRef
107.
Zurück zum Zitat Xu D, Ni W, Wang Q, Xu C, Li K (2021) Ammonia-soda residue and metallurgical slags from iron and steel industries as cementitious materials for clinker-free concretes. J Clean Prod 307:127262CrossRef Xu D, Ni W, Wang Q, Xu C, Li K (2021) Ammonia-soda residue and metallurgical slags from iron and steel industries as cementitious materials for clinker-free concretes. J Clean Prod 307:127262CrossRef
108.
Zurück zum Zitat Tian X, Rao F, León-Patiño CA, Song S (2021) Co-disposal of MSWI fly ash and spent caustic through alkaline-activation consolidation. Cem Concr Compos 116:103888CrossRef Tian X, Rao F, León-Patiño CA, Song S (2021) Co-disposal of MSWI fly ash and spent caustic through alkaline-activation consolidation. Cem Concr Compos 116:103888CrossRef
109.
Zurück zum Zitat Fořt J, Mildner M, Keppert M, Černý R (2022) Waste solidified alkalis as activators of aluminosilicate precursors: functional and environmental evaluation. J Build Eng 54:104598CrossRef Fořt J, Mildner M, Keppert M, Černý R (2022) Waste solidified alkalis as activators of aluminosilicate precursors: functional and environmental evaluation. J Build Eng 54:104598CrossRef
110.
Zurück zum Zitat Fernández-Jiménez A, Cristelo N, Miranda T, Palomo Á (2017) Sustainable alkali activated materials: precursor and activator derived from industrial wastes. J Clean Prod 162:1200–1209CrossRef Fernández-Jiménez A, Cristelo N, Miranda T, Palomo Á (2017) Sustainable alkali activated materials: precursor and activator derived from industrial wastes. J Clean Prod 162:1200–1209CrossRef
111.
Zurück zum Zitat Choeycharoen P, Sornlar W, Wannagon A (2022) A sustainable bottom ash-based alkali-activated materials and geopolymers synthesized by using activator solutions from industrial wastes. J Build Eng 54:104659CrossRef Choeycharoen P, Sornlar W, Wannagon A (2022) A sustainable bottom ash-based alkali-activated materials and geopolymers synthesized by using activator solutions from industrial wastes. J Build Eng 54:104659CrossRef
112.
Zurück zum Zitat Tian X, Rao F, León-Patiño CA, Song S (2020) Co-disposal of MSWI fly ash and spent caustic through alkaline-activation: immobilization of heavy metals and organics. Cem Concr Compos 114:103824CrossRef Tian X, Rao F, León-Patiño CA, Song S (2020) Co-disposal of MSWI fly ash and spent caustic through alkaline-activation: immobilization of heavy metals and organics. Cem Concr Compos 114:103824CrossRef
113.
114.
Zurück zum Zitat Alonso MM, Gascó C, Morales MM, Suárez-Navarro JA, Zamorano M, Puertas F (2019) Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, radiology and leaching behaviour. Cem Concr Compos 104:103384CrossRef Alonso MM, Gascó C, Morales MM, Suárez-Navarro JA, Zamorano M, Puertas F (2019) Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, radiology and leaching behaviour. Cem Concr Compos 104:103384CrossRef
115.
Zurück zum Zitat Wang H, Qi T, Feng G, Wen X, Wang Z, Shi X, Du X (2021) Effect of partial substitution of corn straw fly ash for fly ash as supplementary cementitious material on the mechanical properties of cemented coal gangue backfill. Constr Build Mater 280:122553CrossRef Wang H, Qi T, Feng G, Wen X, Wang Z, Shi X, Du X (2021) Effect of partial substitution of corn straw fly ash for fly ash as supplementary cementitious material on the mechanical properties of cemented coal gangue backfill. Constr Build Mater 280:122553CrossRef
116.
Zurück zum Zitat Silva TH, Lara LFS, Silva GJB, Provis JL, Bezerra ACS (2022) Alkali-activated materials produced using high-calcium, high-carbon biomass ash. Cem Concr Compos 132:104646CrossRef Silva TH, Lara LFS, Silva GJB, Provis JL, Bezerra ACS (2022) Alkali-activated materials produced using high-calcium, high-carbon biomass ash. Cem Concr Compos 132:104646CrossRef
117.
Zurück zum Zitat Soriano L, Font A, Tashima MM, Monzó J, Borrachero MV, Payá J (2020) One-part blast furnace slag mortars activated with almond-shell biomass ash: a new 100% waste-based material. Mater Lett 272:127882CrossRef Soriano L, Font A, Tashima MM, Monzó J, Borrachero MV, Payá J (2020) One-part blast furnace slag mortars activated with almond-shell biomass ash: a new 100% waste-based material. Mater Lett 272:127882CrossRef
118.
Zurück zum Zitat Lima FS, Gomes TCF, Moraes JCBD (2022) Novel one-part alkali-activated binder produced with coffee husk ash. Mater Lett 313:131733CrossRef Lima FS, Gomes TCF, Moraes JCBD (2022) Novel one-part alkali-activated binder produced with coffee husk ash. Mater Lett 313:131733CrossRef
119.
Zurück zum Zitat Balo AM, Rahier H, Mobili A, Katsiki A, Fagel N, Chinje UM, Njopwouo D (2018) Metakaolin-based inorganic polymer synthesis using cotton shell ash as sole alkaline activator. Constr Build Mater 191:1011–1022CrossRef Balo AM, Rahier H, Mobili A, Katsiki A, Fagel N, Chinje UM, Njopwouo D (2018) Metakaolin-based inorganic polymer synthesis using cotton shell ash as sole alkaline activator. Constr Build Mater 191:1011–1022CrossRef
120.
Zurück zum Zitat Sturm P, Gluth GJG, Brouwers HJH, Kühne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966CrossRef Sturm P, Gluth GJG, Brouwers HJH, Kühne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966CrossRef
121.
Zurück zum Zitat Peys A, Rahier H, Pontikes Y (2016) Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl Clay Sci 119:401–409CrossRef Peys A, Rahier H, Pontikes Y (2016) Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl Clay Sci 119:401–409CrossRef
122.
Zurück zum Zitat Font A, Soriano L, Moraes JCB, Tashima MM, Monzó J, Borrachero MV, Payá J (2017) A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Mater Lett 203:46–49CrossRef Font A, Soriano L, Moraes JCB, Tashima MM, Monzó J, Borrachero MV, Payá J (2017) A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Mater Lett 203:46–49CrossRef
123.
Zurück zum Zitat Martirena F, Monzó J (2018) Vegetable ashes as supplementary cementitious materials. Cem Concr Res 114:57–64CrossRef Martirena F, Monzó J (2018) Vegetable ashes as supplementary cementitious materials. Cem Concr Res 114:57–64CrossRef
124.
Zurück zum Zitat Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510:356–362PubMedCrossRefADS Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510:356–362PubMedCrossRefADS
125.
Zurück zum Zitat Soriano L, Font A, Borrachero MV, Monzó JM, Payá J, Tashima MM (2022) Biomass ashes to produce an alternative alkaline activator for alkali-activated cements. Mater Lett 308:131198CrossRef Soriano L, Font A, Borrachero MV, Monzó JM, Payá J, Tashima MM (2022) Biomass ashes to produce an alternative alkaline activator for alkali-activated cements. Mater Lett 308:131198CrossRef
126.
Zurück zum Zitat Sarmiento LM, Clavier KA, Paris JM, Ferraro CC, Townsend TG (2019) Critical examination of recycled municipal solid waste incineration ash as a mineral source for portland cement manufacture–a case study. Resour Conserv Recycl 148:1–10CrossRef Sarmiento LM, Clavier KA, Paris JM, Ferraro CC, Townsend TG (2019) Critical examination of recycled municipal solid waste incineration ash as a mineral source for portland cement manufacture–a case study. Resour Conserv Recycl 148:1–10CrossRef
127.
Zurück zum Zitat Maldonado-Alameda A, Giro-Paloma J, Rodríguez-Romero A, Serret J, Menargues A, Andrés A, Chimenos JM (2021) Environmental potential assessment of MSWI bottom ash-based alkali-activated binders. J Hazard Mater 416:125828PubMedCrossRef Maldonado-Alameda A, Giro-Paloma J, Rodríguez-Romero A, Serret J, Menargues A, Andrés A, Chimenos JM (2021) Environmental potential assessment of MSWI bottom ash-based alkali-activated binders. J Hazard Mater 416:125828PubMedCrossRef
128.
Zurück zum Zitat Provis JL, Harrex RM, Bernal SA, Duxson P, van Deventer JSJ (2012) Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J Non-Cryst Solids 358:1930–1937CrossRefADS Provis JL, Harrex RM, Bernal SA, Duxson P, van Deventer JSJ (2012) Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J Non-Cryst Solids 358:1930–1937CrossRefADS
129.
Zurück zum Zitat Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:463638 Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:463638
130.
Zurück zum Zitat Li Y, Sun H, Liu X, Cui Z (2009) Effect of phase separation structure on cementitious reactivity of blast furnace slag. Sci China Ser E Technol Sci 52:2695–2699CrossRefADS Li Y, Sun H, Liu X, Cui Z (2009) Effect of phase separation structure on cementitious reactivity of blast furnace slag. Sci China Ser E Technol Sci 52:2695–2699CrossRefADS
131.
Zurück zum Zitat Cheah CB, Tan LE, Ramli M (2019) The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume. Compos Pt B-Eng 160:558–572CrossRef Cheah CB, Tan LE, Ramli M (2019) The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume. Compos Pt B-Eng 160:558–572CrossRef
132.
Zurück zum Zitat Kolani B, Buffo-Lacarrière L, Sellier A, Escadeillas G, Boutillon L, Linger L (2012) Hydration of slag-blended cements. Cem Concr Compos 34:1009–1018CrossRef Kolani B, Buffo-Lacarrière L, Sellier A, Escadeillas G, Boutillon L, Linger L (2012) Hydration of slag-blended cements. Cem Concr Compos 34:1009–1018CrossRef
133.
Zurück zum Zitat Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564CrossRef Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564CrossRef
134.
Zurück zum Zitat Yip CK, Lukey GC, van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35:1688–1697CrossRef Yip CK, Lukey GC, van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35:1688–1697CrossRef
135.
Zurück zum Zitat Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34:139–148CrossRef Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34:139–148CrossRef
136.
Zurück zum Zitat Zou F, Zhang M, Hu C, Wang F, Hu S (2021) Novel C-A-S-H/PCE nanocomposites: design, characterization and the effect on cement hydration. Chem Eng J 412:128569CrossRef Zou F, Zhang M, Hu C, Wang F, Hu S (2021) Novel C-A-S-H/PCE nanocomposites: design, characterization and the effect on cement hydration. Chem Eng J 412:128569CrossRef
137.
Zurück zum Zitat Yuan B, Yu QL, Brouwers HJH (2017) Time-dependent characterization of Na2CO3 activated slag. Cem Concr Compos 84:188–197CrossRef Yuan B, Yu QL, Brouwers HJH (2017) Time-dependent characterization of Na2CO3 activated slag. Cem Concr Compos 84:188–197CrossRef
138.
Zurück zum Zitat Wang Y, He X, Su Y, Tan H, Yang J, Lan M, Ma M, Strnadel B (2018) Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Constr Build Mater 167:96–105CrossRef Wang Y, He X, Su Y, Tan H, Yang J, Lan M, Ma M, Strnadel B (2018) Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Constr Build Mater 167:96–105CrossRef
139.
Zurück zum Zitat Wang J, Deng X, Tan H, Guo H, Zhang J, Li M, Chen P, He X, Yang J, Jian S, Yang Z (2023) The mechanical properties and sustainability of phosphogypsum-slag binder activated by nano-ettringite. Sci Total Environ 903:166015PubMedCrossRefADS Wang J, Deng X, Tan H, Guo H, Zhang J, Li M, Chen P, He X, Yang J, Jian S, Yang Z (2023) The mechanical properties and sustainability of phosphogypsum-slag binder activated by nano-ettringite. Sci Total Environ 903:166015PubMedCrossRefADS
140.
Zurück zum Zitat Yoon S, Mun K, Hyung W (2015) Physical properties of activated slag concrete using phosphogypsum and waste lime as an activator. J Asian Archit Build Eng 14:189–195CrossRef Yoon S, Mun K, Hyung W (2015) Physical properties of activated slag concrete using phosphogypsum and waste lime as an activator. J Asian Archit Build Eng 14:189–195CrossRef
141.
Zurück zum Zitat Zhang J, Tan H, He X, Yang W, Deng X, Su Y, Yang J (2019) Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Constr Build Mater 228:116777CrossRef Zhang J, Tan H, He X, Yang W, Deng X, Su Y, Yang J (2019) Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Constr Build Mater 228:116777CrossRef
142.
Zurück zum Zitat Zhu C, Tan H, Du C, Wang J, Deng X, Zheng Z, He X (2023) Enhancement of ultra-fine slag on compressive strength of solid waste-based cementitious materials: towards low carbon emissions. J Build Eng 63:105475CrossRef Zhu C, Tan H, Du C, Wang J, Deng X, Zheng Z, He X (2023) Enhancement of ultra-fine slag on compressive strength of solid waste-based cementitious materials: towards low carbon emissions. J Build Eng 63:105475CrossRef
143.
Zurück zum Zitat Xu C, Ni W, Li K, Zhang S, Xu D (2021) Activation mechanisms of three types of industrial by-product gypsums on steel slag–granulated blast furnace slag-based binders. Constr Build Mater 288:123111CrossRef Xu C, Ni W, Li K, Zhang S, Xu D (2021) Activation mechanisms of three types of industrial by-product gypsums on steel slag–granulated blast furnace slag-based binders. Constr Build Mater 288:123111CrossRef
144.
Zurück zum Zitat Zhang Z, Xie C, Sang Z, Li D (2022) Mechanical properties and microstructure of alkali-activated soda residue-blast furnace slag composite binder. Sustainability 14:11751CrossRef Zhang Z, Xie C, Sang Z, Li D (2022) Mechanical properties and microstructure of alkali-activated soda residue-blast furnace slag composite binder. Sustainability 14:11751CrossRef
145.
Zurück zum Zitat Cong P, Mei L (2021) Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr Build Mater 275:122171CrossRef Cong P, Mei L (2021) Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr Build Mater 275:122171CrossRef
146.
Zurück zum Zitat Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883.CrossRefADS Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883.CrossRefADS
147.
Zurück zum Zitat Gupta V, Pathak DK, Siddique S, Kumar R, Chaudhary S (2020) Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products. Constr Build Mater 235:117413CrossRef Gupta V, Pathak DK, Siddique S, Kumar R, Chaudhary S (2020) Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products. Constr Build Mater 235:117413CrossRef
148.
Zurück zum Zitat Gharzouni A, Ouamara L, Sobrados I, Rossignol S (2018) Alkali-activated materials from different aluminosilicate sources: effect of aluminum and calcium availability. J Non-Cryst Solids 484:14–25CrossRefADS Gharzouni A, Ouamara L, Sobrados I, Rossignol S (2018) Alkali-activated materials from different aluminosilicate sources: effect of aluminum and calcium availability. J Non-Cryst Solids 484:14–25CrossRefADS
149.
Zurück zum Zitat Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91:111–119CrossRef Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91:111–119CrossRef
150.
Zurück zum Zitat Duan S, Liao H, Cheng F, Song H, Yang H (2018) Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Constr Build Mater 187:1113–1120CrossRef Duan S, Liao H, Cheng F, Song H, Yang H (2018) Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Constr Build Mater 187:1113–1120CrossRef
151.
Zurück zum Zitat Wang Q, Su H-l, Li C-m, Lyu X-j (2022) Recycling of steel slag as an alkali activator for blast furnace slag: geopolymer preparation and its application in composite cement. Clean Technol Environ Policy Wang Q, Su H-l, Li C-m, Lyu X-j (2022) Recycling of steel slag as an alkali activator for blast furnace slag: geopolymer preparation and its application in composite cement. Clean Technol Environ Policy
152.
Zurück zum Zitat Duan S, Wu H, Zhang K, Liao H, Ma Z, Cheng F (2022) Effect of curing temperature on the reaction kinetics of cementitious steel slag-fly ash-desulfurized gypsum composites system. J Build Eng 62:105368CrossRef Duan S, Wu H, Zhang K, Liao H, Ma Z, Cheng F (2022) Effect of curing temperature on the reaction kinetics of cementitious steel slag-fly ash-desulfurized gypsum composites system. J Build Eng 62:105368CrossRef
153.
Zurück zum Zitat Yang J, Bai H, He X, Zeng J, Su Y, Wang X, Zhao H, Mao C (2023) Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder. Constr Build Mater 367:130303CrossRef Yang J, Bai H, He X, Zeng J, Su Y, Wang X, Zhao H, Mao C (2023) Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder. Constr Build Mater 367:130303CrossRef
154.
Zurück zum Zitat Hoang MD, Do QM, Le VQ (2020) Effect of curing regime on properties of red mud based alkali activated materials. Constr Build Mater 259:119779CrossRef Hoang MD, Do QM, Le VQ (2020) Effect of curing regime on properties of red mud based alkali activated materials. Constr Build Mater 259:119779CrossRef
155.
Zurück zum Zitat Ye N, Chen Y, Yang J, Liang S, Hu Y, Xiao B, Huang Q, Shi Y, Hu J, Wu X (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78PubMedCrossRef Ye N, Chen Y, Yang J, Liang S, Hu Y, Xiao B, Huang Q, Shi Y, Hu J, Wu X (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78PubMedCrossRef
156.
Zurück zum Zitat Guo W, Wang S, Xu Z, Zhang Z, Zhang C, Bai Y, Zhao Q (2021) Mechanical performance and microstructure improvement of soda residue–carbide slag–ground granulated blast furnace slag binder by optimizing its preparation process and curing method. Constr Build Mater 302:124403CrossRef Guo W, Wang S, Xu Z, Zhang Z, Zhang C, Bai Y, Zhao Q (2021) Mechanical performance and microstructure improvement of soda residue–carbide slag–ground granulated blast furnace slag binder by optimizing its preparation process and curing method. Constr Build Mater 302:124403CrossRef
157.
Zurück zum Zitat Zhang Y, Liu X, Xu Y, Tang B, Wang Y, Mukiza E (2019) Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties. Constr Build Mater 220:364–374CrossRef Zhang Y, Liu X, Xu Y, Tang B, Wang Y, Mukiza E (2019) Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties. Constr Build Mater 220:364–374CrossRef
158.
Zurück zum Zitat Wang H, Zhao X, Wang J, He L, Zhang A, Gao H, Yang J, Liang L (2023) Properties and cementation mechanism of geopolymer backfill paste incorporating diverse industrial solid wastes. Materials 16:480PubMedPubMedCentralCrossRefADS Wang H, Zhao X, Wang J, He L, Zhang A, Gao H, Yang J, Liang L (2023) Properties and cementation mechanism of geopolymer backfill paste incorporating diverse industrial solid wastes. Materials 16:480PubMedPubMedCentralCrossRefADS
159.
Zurück zum Zitat Hao X, Liu X, Zhang Z, Zhang W, Lu Y, Wang Y, Yang T (2022) In-depth insight into the cementitious synergistic effect of steel slag and red mud on the properties of composite cementitious materials. J Build Eng 52:104449CrossRef Hao X, Liu X, Zhang Z, Zhang W, Lu Y, Wang Y, Yang T (2022) In-depth insight into the cementitious synergistic effect of steel slag and red mud on the properties of composite cementitious materials. J Build Eng 52:104449CrossRef
160.
Zurück zum Zitat Zhang W, Hao X, Wei C, Zeng Q, Ma S, Liu X, Zhang Z, Webeck E (2022) Synergistic enhancement of converter steelmaking slag, blast furnace slag, Bayer red mud in cementitious materials: strength, phase composition, and microstructure. J Build Eng 60:105177CrossRef Zhang W, Hao X, Wei C, Zeng Q, Ma S, Liu X, Zhang Z, Webeck E (2022) Synergistic enhancement of converter steelmaking slag, blast furnace slag, Bayer red mud in cementitious materials: strength, phase composition, and microstructure. J Build Eng 60:105177CrossRef
161.
Zurück zum Zitat Zhang W, Hao X, Wei C, Liu X, Zhang Z (2022) Activation of low-activity calcium silicate in converter steelmaking slag based on synergy of multiple solid wastes in cementitious material. Constr Build Mater 351:128925CrossRef Zhang W, Hao X, Wei C, Liu X, Zhang Z (2022) Activation of low-activity calcium silicate in converter steelmaking slag based on synergy of multiple solid wastes in cementitious material. Constr Build Mater 351:128925CrossRef
162.
Zurück zum Zitat Du H, Xu D, Li X, Li J, Ni W, Li Y, Fu P (2022) Application of molten iron desulfurization slag to replace steel slag as an alkaline component in solid waste-based cementitious materials. J Clean Prod 377:134353CrossRef Du H, Xu D, Li X, Li J, Ni W, Li Y, Fu P (2022) Application of molten iron desulfurization slag to replace steel slag as an alkaline component in solid waste-based cementitious materials. J Clean Prod 377:134353CrossRef
163.
Zurück zum Zitat Shi Y, Zhao Q, Xue C, Jia Y, Guo W, Zhang Y, Qiu Y (2023) Preparation and curing method of red mud-calcium carbide slag synergistically activated fly ash-ground granulated blast furnace slag based eco-friendly geopolymer. Cem Concr Compos 139:104999CrossRef Shi Y, Zhao Q, Xue C, Jia Y, Guo W, Zhang Y, Qiu Y (2023) Preparation and curing method of red mud-calcium carbide slag synergistically activated fly ash-ground granulated blast furnace slag based eco-friendly geopolymer. Cem Concr Compos 139:104999CrossRef
164.
Zurück zum Zitat Passuello A, Rodríguez ED, Hirt E, Longhi M, Bernal SA, Provis JL, Kirchheim AP (2017) Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J Cleaner Prod 166:680–689CrossRef Passuello A, Rodríguez ED, Hirt E, Longhi M, Bernal SA, Provis JL, Kirchheim AP (2017) Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J Cleaner Prod 166:680–689CrossRef
165.
Zurück zum Zitat Jamieson E, McLellan B, van Riessen A, Nikraz H (2015) Comparison of embodied energies of ordinary Portland cement with Bayer-derived geopolymer products. J Clean Prod 99:112–118CrossRef Jamieson E, McLellan B, van Riessen A, Nikraz H (2015) Comparison of embodied energies of ordinary Portland cement with Bayer-derived geopolymer products. J Clean Prod 99:112–118CrossRef
166.
Zurück zum Zitat Zhuang S, Wang Q (2021) Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem Concr Res 140:106283CrossRef Zhuang S, Wang Q (2021) Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem Concr Res 140:106283CrossRef
167.
Zurück zum Zitat Wang M, Liu X (2021) Applications of red mud as an environmental remediation material: a review. J Hazard Mater 408:124420PubMedCrossRef Wang M, Liu X (2021) Applications of red mud as an environmental remediation material: a review. J Hazard Mater 408:124420PubMedCrossRef
168.
Zurück zum Zitat Ahmad MR, Das CS, Khan M, Dai J-G (2023) Development of low-carbon alkali-activated materials solely activated by flue gas residues (FGR) waste from incineration plants. J Clean Prod 397:136597CrossRef Ahmad MR, Das CS, Khan M, Dai J-G (2023) Development of low-carbon alkali-activated materials solely activated by flue gas residues (FGR) waste from incineration plants. J Clean Prod 397:136597CrossRef
Metadaten
Titel
Alkali-activated materials without commercial activators: a review
verfasst von
Yulin Wu
Zhiqing Jia
Xiaoqiang Qi
Wenrui Wang
Siyao Guo
Publikationsdatum
26.02.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2024
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-024-09478-8

Weitere Artikel der Ausgabe 9/2024

Journal of Materials Science 9/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.