Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 19/2018

31.07.2018

All-solid-state formation of titania nanotube arrays and their application in photoelectrochemical water splitting

verfasst von: Arezoo Hosseini, Pawan Kumar, Najia Mahdi, Yun Zhang, Karthik Shankar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work demonstrates for the first time the facile fabrication of TiO2 nanotube arrays (TNTAs) by a fluoride-free solid-state anodization process using LiClO4 containing solid polymeric electrolyte. The resulting nanotubes were tested for photoelectrochemical water splitting. The elimination of liquid electrolytes in electrochemical anodization constitutes a paradigm shift for the formation of nanoporous and nanotubular metal oxides. Our results open a new area of research that uses the distinctive properties of solid polymer electrolytes to achieve targeted doping and nano-morphologies. Characterization of the grown TNTAs indicated solid state anodized TNTAs to consist purely of the anatase phase of titania. The solid-state anodization process provides several advantages over conventional liquid electrolytes such as easy handling and processing, better charge transport, environmentally benign chemicals and methodology. Photoelectrochemical water splitting experiments were performed which confirmed the viability of TNTAs grown by the new solid-state process for photocatalytic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef
2.
Zurück zum Zitat P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)CrossRef P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)CrossRef
3.
Zurück zum Zitat S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286–1289 (2007)CrossRef S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286–1289 (2007)CrossRef
4.
Zurück zum Zitat V. Galstyan, A. Vomiero, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 1, 1038–1044 (2011)CrossRef V. Galstyan, A. Vomiero, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 1, 1038–1044 (2011)CrossRef
5.
Zurück zum Zitat S. Farsinezhad, A. Mohammadpour, A.N. Dalrymple, J. Geisinger, P. Kar, M.J. Brett, K. Shankar, Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J. Nanosci. Nanotechnol. 13, 2885–2891 (2013)CrossRef S. Farsinezhad, A. Mohammadpour, A.N. Dalrymple, J. Geisinger, P. Kar, M.J. Brett, K. Shankar, Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J. Nanosci. Nanotechnol. 13, 2885–2891 (2013)CrossRef
6.
Zurück zum Zitat K.S. Mun, S.D. Alvarez, W.Y. Choi, M.J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4, 2070–2076 (2010)CrossRef K.S. Mun, S.D. Alvarez, W.Y. Choi, M.J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4, 2070–2076 (2010)CrossRef
7.
Zurück zum Zitat Lin, J., K. Liu, X.F. Chen, Synthesis of periodically structured titania nanotube films and their potential for photonic applications. Small 7, 1784–1789 (2011)CrossRef Lin, J., K. Liu, X.F. Chen, Synthesis of periodically structured titania nanotube films and their potential for photonic applications. Small 7, 1784–1789 (2011)CrossRef
8.
Zurück zum Zitat J.P. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114, 10725–10729 (2010)CrossRef J.P. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114, 10725–10729 (2010)CrossRef
9.
Zurück zum Zitat V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13, 14813–14838 (2013)CrossRef V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13, 14813–14838 (2013)CrossRef
10.
Zurück zum Zitat S. Farsinezhad, H. Sharma, K. Shankar, Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 17, 29723–29733 (2015)CrossRef S. Farsinezhad, H. Sharma, K. Shankar, Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 17, 29723–29733 (2015)CrossRef
11.
Zurück zum Zitat M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8, 7466–7473 (2016)CrossRef M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8, 7466–7473 (2016)CrossRef
12.
Zurück zum Zitat P. Qin, M. Paulose, M.I. Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Gatzel, M.K. Nazeeruddin, Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11, 5533–5539 (2015)CrossRef P. Qin, M. Paulose, M.I. Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Gatzel, M.K. Nazeeruddin, Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11, 5533–5539 (2015)CrossRef
13.
Zurück zum Zitat S. Kim, G.K. Mor, M. Paulose, O.K. Varghese, K. Shankar, C.A. Grimes, Broad spectrum light harvesting in TiO2 nanotube array - hemicyanine dye - P3HT hybrid solid-state solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1573–1580 (2010)CrossRef S. Kim, G.K. Mor, M. Paulose, O.K. Varghese, K. Shankar, C.A. Grimes, Broad spectrum light harvesting in TiO2 nanotube array - hemicyanine dye - P3HT hybrid solid-state solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1573–1580 (2010)CrossRef
14.
Zurück zum Zitat C.T. Yip, H.T. Huang, L.M. Zhou, K.Y. Xie, Y. Wang, T.H. Feng, J.S. Li, W.Y. Tam, Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv. Mater. 23, 5624–5624+ (2011)CrossRef C.T. Yip, H.T. Huang, L.M. Zhou, K.Y. Xie, Y. Wang, T.H. Feng, J.S. Li, W.Y. Tam, Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv. Mater. 23, 5624–5624+ (2011)CrossRef
15.
Zurück zum Zitat X.J. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine, K. Shankar, Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012)CrossRef X.J. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine, K. Shankar, Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012)CrossRef
16.
Zurück zum Zitat P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 9, 3478–3493 (2016)CrossRef P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 9, 3478–3493 (2016)CrossRef
17.
Zurück zum Zitat A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef
18.
Zurück zum Zitat M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 mu m length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992–14997 (2007)CrossRef M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 mu m length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992–14997 (2007)CrossRef
19.
Zurück zum Zitat K.C. Popat, M. Eltgroth, T.J. La Tempa, C.A. Grimes, T.A. Desai, Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3, 1878–1881 (2007)CrossRef K.C. Popat, M. Eltgroth, T.J. La Tempa, C.A. Grimes, T.A. Desai, Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3, 1878–1881 (2007)CrossRef
20.
Zurück zum Zitat S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106, 2130–2135 (2009)CrossRef S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106, 2130–2135 (2009)CrossRef
21.
Zurück zum Zitat N. Wang, H.Y. Li, W.L. Lu, J.H. Li, J.S. Wang, Z.T. Zhang, Y.R. Liu, Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32, 6900–6911 (2011)CrossRef N. Wang, H.Y. Li, W.L. Lu, J.H. Li, J.S. Wang, Z.T. Zhang, Y.R. Liu, Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32, 6900–6911 (2011)CrossRef
22.
Zurück zum Zitat T. Kanbara, M. Inami, T. Yamamoto, New solid-state electric double-layer capacitor using poly(vinyl alcohol)-based polymer solid electrolyte. J. Power Sources 36, 87–93 (1991)CrossRef T. Kanbara, M. Inami, T. Yamamoto, New solid-state electric double-layer capacitor using poly(vinyl alcohol)-based polymer solid electrolyte. J. Power Sources 36, 87–93 (1991)CrossRef
23.
Zurück zum Zitat M.A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, All polymeric solid state electrochromic devices. Electrochim. Acta 44, 2983–2991 (1999)CrossRef M.A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, All polymeric solid state electrochromic devices. Electrochim. Acta 44, 2983–2991 (1999)CrossRef
24.
Zurück zum Zitat T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett. 2, 1259–1261 (2002)CrossRef T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett. 2, 1259–1261 (2002)CrossRef
25.
Zurück zum Zitat S. Rajendran, M. Sivakumar, R. Subadevi, Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ion. 167, 335–339 (2004)CrossRef S. Rajendran, M. Sivakumar, R. Subadevi, Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ion. 167, 335–339 (2004)CrossRef
26.
Zurück zum Zitat Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014)CrossRef Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014)CrossRef
27.
Zurück zum Zitat Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci.: Mater. Electron. 29, 6183–6187 (2018) Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci.: Mater. Electron. 29, 6183–6187 (2018)
28.
Zurück zum Zitat Ali T., Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci.: Mater. Electron. 29, 1209–1215 (2018) Ali T., Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci.: Mater. Electron. 29, 1209–1215 (2018)
29.
Zurück zum Zitat P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)CrossRef P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)CrossRef
30.
Zurück zum Zitat Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171–186 (2013)CrossRef Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171–186 (2013)CrossRef
31.
Zurück zum Zitat E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)CrossRef E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)CrossRef
32.
Zurück zum Zitat S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013)CrossRef S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013)CrossRef
33.
Zurück zum Zitat J. Tang, J.R. Durrant, D.R. Klug, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008)CrossRef J. Tang, J.R. Durrant, D.R. Klug, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008)CrossRef
34.
Zurück zum Zitat J.-M. Wu, H.C. Shih, W.-T. Wu, Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2005)CrossRef J.-M. Wu, H.C. Shih, W.-T. Wu, Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2005)CrossRef
35.
Zurück zum Zitat J. Shi, X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949–954 (2011)CrossRef J. Shi, X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949–954 (2011)CrossRef
36.
Zurück zum Zitat B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRef B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRef
37.
Zurück zum Zitat O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165 (2003)CrossRef O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165 (2003)CrossRef
38.
Zurück zum Zitat Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells. Appl. Surf. Sci. 380, 210–217 (2016)CrossRef Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells. Appl. Surf. Sci. 380, 210–217 (2016)CrossRef
39.
Zurück zum Zitat L.C. Almeida, M.V. Zanoni, Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J. Braz. Chem. Soc. 25, 579–588 (2014) L.C. Almeida, M.V. Zanoni, Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J. Braz. Chem. Soc. 25, 579–588 (2014)
40.
Zurück zum Zitat S. Yeniyol, Z. He, B. Yüksel, R.J. Boylan, M. Ürgen, T. Özdemir, J.L. Ricci, Antibacterial activity of As-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens. Bioinorg. Chem. Appl. 2014, 829496 (2014)CrossRef S. Yeniyol, Z. He, B. Yüksel, R.J. Boylan, M. Ürgen, T. Özdemir, J.L. Ricci, Antibacterial activity of As-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens. Bioinorg. Chem. Appl. 2014, 829496 (2014)CrossRef
41.
Zurück zum Zitat A. Mohammadpour, Synthesis and characterization of TiO2 nanowire and nanotube arrays for increased optoelectronic functionality. University of Alberta, 2014 A. Mohammadpour, Synthesis and characterization of TiO2 nanowire and nanotube arrays for increased optoelectronic functionality. University of Alberta, 2014
42.
Zurück zum Zitat Chen, X., Y.B. Lou, A.C. Samia, C. Burda, J.L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mater. 15, 41–49 (2005)CrossRef Chen, X., Y.B. Lou, A.C. Samia, C. Burda, J.L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mater. 15, 41–49 (2005)CrossRef
43.
Zurück zum Zitat H. Wang, Y. Wu, B.-Q. Xu, Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B 59, 139–146 (2005)CrossRef H. Wang, Y. Wu, B.-Q. Xu, Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B 59, 139–146 (2005)CrossRef
44.
Zurück zum Zitat T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)CrossRef T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)CrossRef
45.
Zurück zum Zitat A. Orendorz, A. Brodyanski, J. Lösch, L. Bai, Z. Chen, Y. Le, C. Ziegler, H. Gnaser, Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 601, 4390–4394 (2007)CrossRef A. Orendorz, A. Brodyanski, J. Lösch, L. Bai, Z. Chen, Y. Le, C. Ziegler, H. Gnaser, Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 601, 4390–4394 (2007)CrossRef
46.
Zurück zum Zitat J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 253, 8952–8961 (2007)CrossRef J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 253, 8952–8961 (2007)CrossRef
47.
Zurück zum Zitat F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116, 7515–7519 (2012)CrossRef F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116, 7515–7519 (2012)CrossRef
48.
Zurück zum Zitat G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)CrossRef G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)CrossRef
49.
Zurück zum Zitat S. Farsinezhad, A.N. Dalrymple, K. Shankar, Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi A 211, 1113–1121 (2014)CrossRef S. Farsinezhad, A.N. Dalrymple, K. Shankar, Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi A 211, 1113–1121 (2014)CrossRef
50.
Zurück zum Zitat A. Mohammadpour, K. Shankar, Magnetic field-assisted electroless anodization: TiO2 nanotube growth on discontinuous, patterned Ti films. J. Mater. Chem. A 2, 13810–13816 (2014)CrossRef A. Mohammadpour, K. Shankar, Magnetic field-assisted electroless anodization: TiO2 nanotube growth on discontinuous, patterned Ti films. J. Mater. Chem. A 2, 13810–13816 (2014)CrossRef
51.
Zurück zum Zitat H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235–7241 (2007)CrossRef H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235–7241 (2007)CrossRef
52.
Zurück zum Zitat F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010)CrossRef F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010)CrossRef
Metadaten
Titel
All-solid-state formation of titania nanotube arrays and their application in photoelectrochemical water splitting
verfasst von
Arezoo Hosseini
Pawan Kumar
Najia Mahdi
Yun Zhang
Karthik Shankar
Publikationsdatum
31.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 19/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9752-2

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science: Materials in Electronics 19/2018 Zur Ausgabe

Neuer Inhalt