Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 17/2020

22.07.2020

Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode

verfasst von: Ahmed A. Qayyum, Zuhair S. Khan, Sheeraz Ashraf, Nisar Ahmed

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tin-based chalcogenides are considered as a promising anode material for sodium-ion batteries yet they suffer from poor electronic conductivity, initial coulombic efficiency and capacity retention. Herein, using facile solvothermal route, cauliflower-like SnS/CNTs and codoped SnS/CNTs nanocomposites were synthesized. Heteroatom dopants in codoped SnS/CNTs create an amorphous structure which provides sufficient space to release volumetric strains induced during sodiation/desodiation, resulting in superior capacity retention and initial coulombic efficiency of 44% as compared to 39.4% for SnS/CNTs and 36% for SnS. Carbon nanotubes create a framework by connecting cauliflower-like SnS together and at 0.1 A g−1, it delivers a reversible capacity of 183.3 mAh g−1 after 50 cycles in SnS/CNTs, which is more than twice as high as is delivered by pure SnS, and also with a very small resistance to charge transfer. Therefore, these novel nanocomposites provide a robust platform for application in sodium-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017) J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017)
2.
Zurück zum Zitat C. Chen et al., In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon N. Y. 120, 380–391 (2017) C. Chen et al., In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon N. Y. 120, 380–391 (2017)
3.
Zurück zum Zitat H. Lai et al., Fabrication of graphene supported SnO2 nanoparticles and their sodium storage properties. Mater. Lett. 166, 292–295 (2016) H. Lai et al., Fabrication of graphene supported SnO2 nanoparticles and their sodium storage properties. Mater. Lett. 166, 292–295 (2016)
4.
Zurück zum Zitat M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015) M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)
5.
Zurück zum Zitat S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mwcnts wrapped flower-like SnS composite as anode material for sodium-ion battery. Mater. Lett. 209, 212–215 (2017) S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mwcnts wrapped flower-like SnS composite as anode material for sodium-ion battery. Mater. Lett. 209, 212–215 (2017)
6.
Zurück zum Zitat K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1–49 (2018) K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1–49 (2018)
7.
Zurück zum Zitat A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M.R. Palacín, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015) A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M.R. Palacín, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015)
8.
Zurück zum Zitat F.U. Hassan, U. Ahmed, M. Muhyuddin, M. Yasir, M.N. Ashiq, M.A. Basit, Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater. Res. Bull. 120, no. May, p. 110588 (2019) F.U. Hassan, U. Ahmed, M. Muhyuddin, M. Yasir, M.N. Ashiq, M.A. Basit, Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater. Res. Bull. 120, no. May, p. 110588 (2019)
9.
Zurück zum Zitat M. Muhyuddin, M.T. Ahsan, I. Ali, T.F. Khan, M.A. Akram, M.A. Basit, A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs. Appl. Phys. A 125(10), 716 (2019) M. Muhyuddin, M.T. Ahsan, I. Ali, T.F. Khan, M.A. Akram, M.A. Basit, A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs. Appl. Phys. A 125(10), 716 (2019)
10.
Zurück zum Zitat Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1–24 (2017) Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1–24 (2017)
11.
Zurück zum Zitat D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 48(45), 5608–5610 (2012) D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 48(45), 5608–5610 (2012)
12.
Zurück zum Zitat L. Zhou et al., Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 35, 281–289 (May 2017) L. Zhou et al., Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 35, 281–289 (May 2017)
13.
Zurück zum Zitat M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes (Elsevier, Amsterdam, 2016) M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes (Elsevier, Amsterdam, 2016)
14.
Zurück zum Zitat P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B  213, 12–40 (2016) P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B  213, 12–40 (2016)
15.
Zurück zum Zitat Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS2 flowers/carbon nanotubes network: extraordinary rate capacity for sodium-ion battery. Mater. Lett. 186, 57–61 (2017) Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS2 flowers/carbon nanotubes network: extraordinary rate capacity for sodium-ion battery. Mater. Lett. 186, 57–61 (2017)
16.
Zurück zum Zitat S. Zhang, H. Zhao, M. Wu, L. Yue, J. Mi, One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries. J. Alloys Compd. 737, 92–98 (2018) S. Zhang, H. Zhao, M. Wu, L. Yue, J. Mi, One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries. J. Alloys Compd. 737, 92–98 (2018)
17.
Zurück zum Zitat J. Zhu, Y. Li, G. Hu, Large-scale synthesis of SnS/carbon nanotube composites with enhanced reversible lithium-ion storage. Ionics. 24(4), 1265–1269 (2018) J. Zhu, Y. Li, G. Hu, Large-scale synthesis of SnS/carbon nanotube composites with enhanced reversible lithium-ion storage. Ionics. 24(4), 1265–1269 (2018)
18.
Zurück zum Zitat T. Anitha, A.E. Reddy, I.K. Durga, S.S. Rao, H.W. Nam, H.J. Kim, Facile synthesis of ZnWO4@WS2 cauliflower-like structures for supercapacitors with enhanced electrochemical performance. J. Electroanal. Chem. 841, 86–93 (May 2019) T. Anitha, A.E. Reddy, I.K. Durga, S.S. Rao, H.W. Nam, H.J. Kim, Facile synthesis of ZnWO4@WS2 cauliflower-like structures for supercapacitors with enhanced electrochemical performance. J. Electroanal. Chem. 841, 86–93 (May 2019)
19.
Zurück zum Zitat D.A. Reddy et al., Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. Int. J. Hydrogen Energy 45(13), 7741–7750 (2020) D.A. Reddy et al., Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. Int. J. Hydrogen Energy 45(13), 7741–7750 (2020)
20.
Zurück zum Zitat V.G.R. Kummara, V. Rajangam, V.V.M.G. Chandu, M.R. Kummara, H.J. Kim, Facile synthesis of hierarchical agglomerated cauliflower-like ZnWO4@NiO nanostructures as an efficient electrode material for high-performance supercapacitor applications. Mater. Lett. 268, 127594 (2020) V.G.R. Kummara, V. Rajangam, V.V.M.G. Chandu, M.R. Kummara, H.J. Kim, Facile synthesis of hierarchical agglomerated cauliflower-like ZnWO4@NiO nanostructures as an efficient electrode material for high-performance supercapacitor applications. Mater. Lett. 268, 127594 (2020)
21.
Zurück zum Zitat J. He et al., Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries. Carbon N. Y. 114, 111–116 (2017) J. He et al., Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries. Carbon N. Y. 114, 111–116 (2017)
22.
Zurück zum Zitat L. Fan et al., Promising dual-doped graphene Aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 10(3), 2637–2648 (2018) L. Fan et al., Promising dual-doped graphene Aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 10(3), 2637–2648 (2018)
23.
Zurück zum Zitat Y. Zhang et al., Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon N. Y. 150, 378–387 (2019) Y. Zhang et al., Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon N. Y. 150, 378–387 (2019)
24.
Zurück zum Zitat Y. Li et al., Sulfur-nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Int. J. Hydrogen Energy 39(28), 16073–16080 (2014) Y. Li et al., Sulfur-nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Int. J. Hydrogen Energy 39(28), 16073–16080 (2014)
25.
Zurück zum Zitat Y. Wang et al., Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. 18, 366–374 (2019) Y. Wang et al., Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. 18, 366–374 (2019)
26.
Zurück zum Zitat X. Ren et al., MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 41(2), 916–923 (2016) X. Ren et al., MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 41(2), 916–923 (2016)
27.
Zurück zum Zitat S. Mohebbi, S. Mikaeily, A.R.J. Azar, Cauliflower-like tin sulphide nanoparticles: an amazing material for adsorption of methylene blue dye. Micro Nano Lett. 10(4), 220–223 (2015) S. Mohebbi, S. Mikaeily, A.R.J. Azar, Cauliflower-like tin sulphide nanoparticles: an amazing material for adsorption of methylene blue dye. Micro Nano Lett. 10(4), 220–223 (2015)
28.
Zurück zum Zitat B. Yang et al., Structural phase transition from Tin (IV) Sulfide to Tin (II) sulfide and the enhanced performance by introducing graphene in dye-sensitized solar cells. Electrochim. Acta 176, 797–803 (2015) B. Yang et al., Structural phase transition from Tin (IV) Sulfide to Tin (II) sulfide and the enhanced performance by introducing graphene in dye-sensitized solar cells. Electrochim. Acta 176, 797–803 (2015)
29.
Zurück zum Zitat J. Pei et al., Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries. Nanotechnology 29(29), 295404 (Jul. 2018) J. Pei et al., Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries. Nanotechnology 29(29), 295404 (Jul. 2018)
30.
Zurück zum Zitat S. Li et al., Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. Electrochim. Acta 136, 355–362 (2014) S. Li et al., Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. Electrochim. Acta 136, 355–362 (2014)
31.
Zurück zum Zitat E. Groppo, F. Bonino, F. Cesano, A. Damin, M. Manzoli, CHAPTER 4: Raman, IR and INS Characterization of Functionalized Carbon Materials, vol. 2018-Janua, no. 31. (2018) E. Groppo, F. Bonino, F. Cesano, A. Damin, M. Manzoli, CHAPTER 4: Raman, IR and INS Characterization of Functionalized Carbon Materials, vol. 2018-Janua, no. 31. (2018)
32.
Zurück zum Zitat M. Gurubhaskar, N. Thota, M. Raghavender, Y.P.V. Subbaiah, G.H. Chandra, K.T.R. Reddy, A facile and TGA free hydrothermal synthesis of SnS nanoparticles. Nano 12(10), 1–10 (2017) M. Gurubhaskar, N. Thota, M. Raghavender, Y.P.V. Subbaiah, G.H. Chandra, K.T.R. Reddy, A facile and TGA free hydrothermal synthesis of SnS nanoparticles. Nano 12(10), 1–10 (2017)
33.
Zurück zum Zitat A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, FTIR studies of nitrogen doped carbon nanotubes. Diam. Relat. Mater. 15, 2–3 (2006) A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, FTIR studies of nitrogen doped carbon nanotubes. Diam. Relat. Mater. 15, 2–3 (2006)
34.
Zurück zum Zitat B.H. Baby, A. E. G., and B. M. D., “The formation of orthorhombic SnS nanorods using CTAB in solvothermal method with its phase stability, optical and electrical properties. Mater. Res. Bull. 128, 110883 (2020) B.H. Baby, A. E. G., and B. M. D., “The formation of orthorhombic SnS nanorods using CTAB in solvothermal method with its phase stability, optical and electrical properties. Mater. Res. Bull. 128, 110883 (2020)
35.
Zurück zum Zitat Y. Liu et al., Amorphous SnS nanosheets/graphene oxide hybrid with efficient dielectric loss to improve the high-frequency electromagnetic wave absorption properties. Appl. Surf. Sci. 486, 344–353 (2019) Y. Liu et al., Amorphous SnS nanosheets/graphene oxide hybrid with efficient dielectric loss to improve the high-frequency electromagnetic wave absorption properties. Appl. Surf. Sci. 486, 344–353 (2019)
36.
Zurück zum Zitat D.J. Kim et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013) D.J. Kim et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013)
37.
Zurück zum Zitat J. Xia et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2019) J. Xia et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2019)
38.
Zurück zum Zitat J. Liang, L. Zhang, D. XiLi, J. Kang, Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim. Acta 341, 136030 (2020) J. Liang, L. Zhang, D. XiLi, J. Kang, Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim. Acta 341, 136030 (2020)
39.
Zurück zum Zitat D. Zhou, Y. Liu, W.L. Song, X. Li, L.Z. Fan, Y. Deng, Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chem. Eng. J. 316, 645–654 (2017) D. Zhou, Y. Liu, W.L. Song, X. Li, L.Z. Fan, Y. Deng, Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chem. Eng. J. 316, 645–654 (2017)
40.
Zurück zum Zitat R. Zhan, L. Hu, J. Han, C. Dai, J. Jiang, M. Xu, Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. J. Mater. Sci. Mater. Electron. 29(5), 4250–4255 (2018) R. Zhan, L. Hu, J. Han, C. Dai, J. Jiang, M. Xu, Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. J. Mater. Sci. Mater. Electron. 29(5), 4250–4255 (2018)
41.
Zurück zum Zitat J.R. Rodriguez, Z. Qi, H. Wang, M.Y. Shalaginov, M. Kang, K.A. Richardson, Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode. Nano Energy 68, 104326 (2019) J.R. Rodriguez, Z. Qi, H. Wang, M.Y. Shalaginov, M. Kang, K.A. Richardson, Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode. Nano Energy 68, 104326 (2019)
42.
Zurück zum Zitat F. Han, W.C. Li, C. Lei, B. He, K. Oshida, A.H. Lu, Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery. Small 10(13), 2637–2644 (2014) F. Han, W.C. Li, C. Lei, B. He, K. Oshida, A.H. Lu, Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery. Small 10(13), 2637–2644 (2014)
43.
Zurück zum Zitat X. Li et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22, 1647–1654 (2012) X. Li et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22, 1647–1654 (2012)
44.
Zurück zum Zitat B. Qin et al., Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries. Electrochim. Acta 296, 806–813 (2019) B. Qin et al., Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries. Electrochim. Acta 296, 806–813 (2019)
45.
Zurück zum Zitat Y. Zhang et al., Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage. Nanoscale 11(27), 12846–12852 (2019) Y. Zhang et al., Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage. Nanoscale 11(27), 12846–12852 (2019)
46.
Zurück zum Zitat S.H. Choi, Y. Jang, Y.J. Choi, Y.N. Ko, Facile synthesis of macroporus SnS microspheres as a potential anode material for enhanced sodium ion batteries. J. Ind. Eng. Chem. 80, 130–135 (2019) S.H. Choi, Y. Jang, Y.J. Choi, Y.N. Ko, Facile synthesis of macroporus SnS microspheres as a potential anode material for enhanced sodium ion batteries. J. Ind. Eng. Chem. 80, 130–135 (2019)
47.
Zurück zum Zitat J. Ai et al., Pomegranate-inspired SnS/ZnS@C heterostructural nanocubes towards high-performance sodium ion battery. Appl. Surf. Sci. 496, 143631 (2019) J. Ai et al., Pomegranate-inspired SnS/ZnS@C heterostructural nanocubes towards high-performance sodium ion battery. Appl. Surf. Sci. 496, 143631 (2019)
48.
Zurück zum Zitat S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004) S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004)
49.
Zurück zum Zitat N.R. Srinivasan, S. Mitra, R. Bandyopadhyaya, Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Phys. Chem. Chem. Phys. 16(14), 6630–6640 (2014) N.R. Srinivasan, S. Mitra, R. Bandyopadhyaya, Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Phys. Chem. Chem. Phys. 16(14), 6630–6640 (2014)
50.
Zurück zum Zitat J. Ren, Y. Zhou, H. Wu, F. Xie, C. Xu, D. Lin, Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries. J. Energy Chem. 30, 121–131 (2019) J. Ren, Y. Zhou, H. Wu, F. Xie, C. Xu, D. Lin, Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries. J. Energy Chem. 30, 121–131 (2019)
51.
Zurück zum Zitat Y. Zhang et al., Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite. Electrochim. Acta 296, 891–900 (2019) Y. Zhang et al., Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite. Electrochim. Acta 296, 891–900 (2019)
52.
Zurück zum Zitat Y. Chen et al., Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin. Chem. Lett. 29(1), 187–190 (2018) Y. Chen et al., Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin. Chem. Lett. 29(1), 187–190 (2018)
53.
Zurück zum Zitat S. Zhang, H. Zhao, M. Wang, Z. Li, J. Mi, Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon fibers as excellent anode material for sodium-ion batteries. Electrochim. Acta 279, 1–9 (2019) S. Zhang, H. Zhao, M. Wang, Z. Li, J. Mi, Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon fibers as excellent anode material for sodium-ion batteries. Electrochim. Acta 279, 1–9 (2019)
Metadaten
Titel
Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode
verfasst von
Ahmed A. Qayyum
Zuhair S. Khan
Sheeraz Ashraf
Nisar Ahmed
Publikationsdatum
22.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 17/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04012-3

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science: Materials in Electronics 17/2020 Zur Ausgabe

Neuer Inhalt