Skip to main content
Erschienen in: Journal of Applied and Industrial Mathematics 2/2022

01.05.2022

An Adaptive Element-Free Galerkin Approach for Solving Singularly Perturbed Boundary Layer Problems

verfasst von: J. Kaur, V. Sangwan

Erschienen in: Journal of Applied and Industrial Mathematics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper’s objective is to propose a robust and dynamic mesh-free numerical approach to solve singularly perturbed problems(SPPs). As is well recognized that solutions of SPPs yield boundary layers as the singular perturbation parameter approaches to zero and the conventional approaches fail to approximate these solutions, especially in the boundary layer region. In the present work, element-free Galerkin (EFG) approach has been proposed to capture these solutions with a high precision of accuracy. The key benefit of the suggested approach is that there is no need for mesh or element connectivity during implementation. Drive to this advantage, in the paper, non-uniformly distributed nodes have been constructed which condense in the boundary layer region. The moving least-squares (MLS) approximation has been employed to generate the shape functions. The proposed approach is based on global weak form and involves background cells for numerical integration computations. Essential boundary conditions have been enforced by the incorporation of the Lagrange multiplier method. In order to verify the computational consistency and robustness of the EFG scheme, a variety of numerical examples have been considered and \( L_\infty \) errors have been presented. Comparisons of solutions have been made with those available in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications. Vol. 56 (Springer Sci. & Bus. Media, New York, 2012). K. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications. Vol. 56 (Springer Sci. & Bus. Media, New York, 2012).
2.
Zurück zum Zitat P. Farrell, A. Hegarty, J. M. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers (CRC Press, Boca Raton, 2000).CrossRefMATH P. Farrell, A. Hegarty, J. M. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers (CRC Press, Boca Raton, 2000).CrossRefMATH
3.
Zurück zum Zitat H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems. Vol. 24 (Springer Sci. & Bus. Media, New York, 2008).MATH H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems. Vol. 24 (Springer Sci. & Bus. Media, New York, 2008).MATH
4.
Zurück zum Zitat M. K. Kadalbajoo and Y. Reddy, “Asymptotic and numerical analysis of singular perturbation problems: a survey,” Appl. Math. Comput. 30 (3), 223–259 (1989).MathSciNetMATH M. K. Kadalbajoo and Y. Reddy, “Asymptotic and numerical analysis of singular perturbation problems: a survey,” Appl. Math. Comput. 30 (3), 223–259 (1989).MathSciNetMATH
5.
Zurück zum Zitat M. K. Kadalbajoo and K. C. Patidar, “A survey of numerical techniques for solving singularly perturbed ordinary differential equations,” Appl. Math. Comput. 130 (2–3), 457–510 (2002).MathSciNetMATH M. K. Kadalbajoo and K. C. Patidar, “A survey of numerical techniques for solving singularly perturbed ordinary differential equations,” Appl. Math. Comput. 130 (2–3), 457–510 (2002).MathSciNetMATH
6.
Zurück zum Zitat M. K. Kadalbajoo and K. C. Patidar, “Numerical solution of singularly perturbed two-point boundary value problems by spline in tension,” Appl. Math. Comput. 131 (2–3), 299–320 (2002).MathSciNetMATH M. K. Kadalbajoo and K. C. Patidar, “Numerical solution of singularly perturbed two-point boundary value problems by spline in tension,” Appl. Math. Comput. 131 (2–3), 299–320 (2002).MathSciNetMATH
7.
Zurück zum Zitat M. K. Kadalbajoo and K. C. Patidar, “Singularly perturbed problems in partial differential equations: a survey,” Appl. Math. Comput. 134 (2–3), 371–429 (2003).MathSciNetMATH M. K. Kadalbajoo and K. C. Patidar, “Singularly perturbed problems in partial differential equations: a survey,” Appl. Math. Comput. 134 (2–3), 371–429 (2003).MathSciNetMATH
8.
Zurück zum Zitat M. K. Kadalbajoo and V. Gupta, “A brief survey on numerical methods for solving singularly perturbed problems,” Appl. Math. Comput. 217 (8), 3641–3716 (2010).MathSciNetMATH M. K. Kadalbajoo and V. Gupta, “A brief survey on numerical methods for solving singularly perturbed problems,” Appl. Math. Comput. 217 (8), 3641–3716 (2010).MathSciNetMATH
9.
10.
Zurück zum Zitat C. E. Pearson, “On non-linear ordinary differential equations of boundary layer type,” J. Math. Phys. 47 (1–4), 351–358 (1968).MathSciNetCrossRefMATH C. E. Pearson, “On non-linear ordinary differential equations of boundary layer type,” J. Math. Phys. 47 (1–4), 351–358 (1968).MathSciNetCrossRefMATH
11.
Zurück zum Zitat O. Axelsson and I. Gustafsson, “A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations,” IMA J. Appl. Math. 23 (3), 321–337 (1979).CrossRefMATH O. Axelsson and I. Gustafsson, “A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations,” IMA J. Appl. Math. 23 (3), 321–337 (1979).CrossRefMATH
12.
Zurück zum Zitat E. Ortiz, A. Pham-Ngoc-Dinh, and W. Törnig, “An error analysis of the tau method for a class of singularly perturbed problems for differential equations,” Math. Methods Appl. Sci. 6 (1), 457–466 (1984).MathSciNetCrossRefMATH E. Ortiz, A. Pham-Ngoc-Dinh, and W. Törnig, “An error analysis of the tau method for a class of singularly perturbed problems for differential equations,” Math. Methods Appl. Sci. 6 (1), 457–466 (1984).MathSciNetCrossRefMATH
13.
Zurück zum Zitat W. G. Kelley, “Boundary value problems for pairs of second-order equations containing a small parameter,” Rocky Mt. J. Math. 12 (4), 655–667 (1982).MathSciNetCrossRefMATH W. G. Kelley, “Boundary value problems for pairs of second-order equations containing a small parameter,” Rocky Mt. J. Math. 12 (4), 655–667 (1982).MathSciNetCrossRefMATH
14.
Zurück zum Zitat J. E. Flaherty and W. Mathon, “Collocation with polynomial and tension splines for singularly-perturbed boundary value problems,” SIAM J. Sci. Stat. Comput. 1 (2), 260–289 (1980).MathSciNetCrossRefMATH J. E. Flaherty and W. Mathon, “Collocation with polynomial and tension splines for singularly-perturbed boundary value problems,” SIAM J. Sci. Stat. Comput. 1 (2), 260–289 (1980).MathSciNetCrossRefMATH
15.
Zurück zum Zitat K. Niijima, “On a difference scheme of exponential type for a nonlinear singular perturbation problem,” Numerische Math. 46 (4), 521–539 (1985).MathSciNetCrossRefMATH K. Niijima, “On a difference scheme of exponential type for a nonlinear singular perturbation problem,” Numerische Math. 46 (4), 521–539 (1985).MathSciNetCrossRefMATH
17.
Zurück zum Zitat M. K. Kadalbajoo and A. Appaji Rao, “Parallel discrete invariant embedding algorithm for singular perturbation problems,” Int. J. Comput. Math. 66 (1–2), 149–161 (1998).MathSciNetCrossRefMATH M. K. Kadalbajoo and A. Appaji Rao, “Parallel discrete invariant embedding algorithm for singular perturbation problems,” Int. J. Comput. Math. 66 (1–2), 149–161 (1998).MathSciNetCrossRefMATH
18.
Zurück zum Zitat G. Shishkin, “A method of improving the accuracy of the solution of difference schemes for parabolic equations with a small parameter in the highest derivative,” USSR Comput. Math. Math. Phys. 24 (3), 150–157 (1984).CrossRefMATH G. Shishkin, “A method of improving the accuracy of the solution of difference schemes for parabolic equations with a small parameter in the highest derivative,” USSR Comput. Math. Math. Phys. 24 (3), 150–157 (1984).CrossRefMATH
19.
Zurück zum Zitat G. I. Shishkin, “Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives,” Zh. Vychisl. Mat. Mat. Fiz. 26 (7), 1019–1031 (1986).MathSciNetMATH G. I. Shishkin, “Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives,” Zh. Vychisl. Mat. Mat. Fiz. 26 (7), 1019–1031 (1986).MathSciNetMATH
20.
Zurück zum Zitat G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions,” USSR Comput. Math. Math. Phys. 28 (6), 32–41 (1988).MathSciNetCrossRefMATH G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions,” USSR Comput. Math. Math. Phys. 28 (6), 32–41 (1988).MathSciNetCrossRefMATH
21.
Zurück zum Zitat G. I. Shishkin, “Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer,” USSR Comput. Math. Math. Phys. 29 (4), 1–10 (1989).MathSciNetCrossRefMATH G. I. Shishkin, “Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer,” USSR Comput. Math. Math. Phys. 29 (4), 1–10 (1989).MathSciNetCrossRefMATH
22.
Zurück zum Zitat G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow 1,” Sib. Zh. Vychisl. Mat. (3), 281–297 (1998). G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow 1,” Sib. Zh. Vychisl. Mat. (3), 281–297 (1998).
23.
Zurück zum Zitat G. Shishkin, “Grid approximation of a singularly perturbed elliptic convection-diffusion equation in an unbounded domain,” Russ. J. Numer. Anal. Math. Model. 21 (1), 67–94 (2006).MathSciNetCrossRefMATH G. Shishkin, “Grid approximation of a singularly perturbed elliptic convection-diffusion equation in an unbounded domain,” Russ. J. Numer. Anal. Math. Model. 21 (1), 67–94 (2006).MathSciNetCrossRefMATH
24.
Zurück zum Zitat V. Andreev and N. Kopteva, “Pointwise approximation of corner singularities for a singularly perturbed reaction–diffusion equation in an \( L \)-shape domain,” Math. Comput. 77 (264), 2125–2139 (2008).CrossRefMATH V. Andreev and N. Kopteva, “Pointwise approximation of corner singularities for a singularly perturbed reaction–diffusion equation in an \( L \)-shape domain,” Math. Comput. 77 (264), 2125–2139 (2008).CrossRefMATH
25.
Zurück zum Zitat I. Braianov and L. Vulkov, “Numerical solution of a reaction-diffusion elliptic interface problem with strong anisotropy,” Computing 71 (2), 153–173 (2003).MathSciNetCrossRefMATH I. Braianov and L. Vulkov, “Numerical solution of a reaction-diffusion elliptic interface problem with strong anisotropy,” Computing 71 (2), 153–173 (2003).MathSciNetCrossRefMATH
26.
Zurück zum Zitat N. Kopteva, “Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem,” Math. Comput. 76 (258), 631–646 (2007).MathSciNetCrossRefMATH N. Kopteva, “Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem,” Math. Comput. 76 (258), 631–646 (2007).MathSciNetCrossRefMATH
27.
Zurück zum Zitat A. Hashemian and H. M. Shodja, “A meshless approach for solution of Burgers’ equation,” J. Comput. Appl. Math. 220 (1–2), 226–239 (2008).MathSciNetCrossRefMATH A. Hashemian and H. M. Shodja, “A meshless approach for solution of Burgers’ equation,” J. Comput. Appl. Math. 220 (1–2), 226–239 (2008).MathSciNetCrossRefMATH
28.
Zurück zum Zitat F. Geng and S. Qian, “Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers,” Appl. Math. Lett. 26 (10), 998–1004 (2013).MathSciNetCrossRefMATH F. Geng and S. Qian, “Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers,” Appl. Math. Lett. 26 (10), 998–1004 (2013).MathSciNetCrossRefMATH
29.
Zurück zum Zitat F. Geng and S. Qian, “Modified reproducing kernel method for singularly perturbed boundary value problems with a delay,” Appl. Math. Model. 39 (18), 5592–5597 (2015).MathSciNetCrossRefMATH F. Geng and S. Qian, “Modified reproducing kernel method for singularly perturbed boundary value problems with a delay,” Appl. Math. Model. 39 (18), 5592–5597 (2015).MathSciNetCrossRefMATH
30.
Zurück zum Zitat J. Saberi-Nadjafi and F. A. Ghassabzade, “The numerical solution of the singularly perturbed differential–difference equations based on the meshless method,” Int. J. Appl. Math. Res. 3 (2), 116 (2014). J. Saberi-Nadjafi and F. A. Ghassabzade, “The numerical solution of the singularly perturbed differential–difference equations based on the meshless method,” Int. J. Appl. Math. Res. 3 (2), 116 (2014).
31.
Zurück zum Zitat F. Akhavan Ghassabzade, J. Saberi-Nadjafi, and A. R. Soheili, “A method based on the meshless approach for singularly perturbed differential-difference equations with boundary layers,” Comput. Methods Differ. Equat. 6 (3), 295–311 (2018).MathSciNetMATH F. Akhavan Ghassabzade, J. Saberi-Nadjafi, and A. R. Soheili, “A method based on the meshless approach for singularly perturbed differential-difference equations with boundary layers,” Comput. Methods Differ. Equat. 6 (3), 295–311 (2018).MathSciNetMATH
32.
Zurück zum Zitat T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” Int. J. Numer. Methods Eng. 37 (2), 229–256 (1994).MathSciNetCrossRefMATH T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” Int. J. Numer. Methods Eng. 37 (2), 229–256 (1994).MathSciNetCrossRefMATH
33.
Zurück zum Zitat M. Kumar, H. K. Mishra, and P. Singh, “A boundary value approach for a class of linear singularly perturbed boundary value problems,” Adv. Eng. Software 40 (4), 298–304 (2009).CrossRefMATH M. Kumar, H. K. Mishra, and P. Singh, “A boundary value approach for a class of linear singularly perturbed boundary value problems,” Adv. Eng. Software 40 (4), 298–304 (2009).CrossRefMATH
34.
Zurück zum Zitat F. W. Gelu, G. F. Duressa, and T. A. Bullo, “Sixth-order compact finite difference method for singularly perturbed 1d reaction–diffusion problems,” J. Taibah Univ. Sci. 11 (2), 302–308 (2017).CrossRef F. W. Gelu, G. F. Duressa, and T. A. Bullo, “Sixth-order compact finite difference method for singularly perturbed 1d reaction–diffusion problems,” J. Taibah Univ. Sci. 11 (2), 302–308 (2017).CrossRef
35.
Zurück zum Zitat V. Vampa, M. T. Martin, and E. Serrano, “A hybrid method using wavelets for the numerical solution of boundary value problems on the interval,” Appl. Math. Comput. 217 (7), 3355–3367 (2010).MathSciNetMATH V. Vampa, M. T. Martin, and E. Serrano, “A hybrid method using wavelets for the numerical solution of boundary value problems on the interval,” Appl. Math. Comput. 217 (7), 3355–3367 (2010).MathSciNetMATH
36.
Zurück zum Zitat M. Kadalbajoo and K. Patidar, “Exponentially fitted spline in compression for the numerical solution of singular perturbation problems,” Comput. & Math. Appl. 46 (5–6), 751–767 (2003).MathSciNetCrossRefMATH M. Kadalbajoo and K. Patidar, “Exponentially fitted spline in compression for the numerical solution of singular perturbation problems,” Comput. & Math. Appl. 46 (5–6), 751–767 (2003).MathSciNetCrossRefMATH
37.
Zurück zum Zitat M. K. Kadalbajoo and K. C. Patidar, “ \( \epsilon \)-uniformly convergent fitted mesh finite difference methods for general singular perturbation problems,” Appl. Math. Comput. 179 (1), 248–266 (2006).MathSciNetMATH M. K. Kadalbajoo and K. C. Patidar, “ \( \epsilon \)-uniformly convergent fitted mesh finite difference methods for general singular perturbation problems,” Appl. Math. Comput. 179 (1), 248–266 (2006).MathSciNetMATH
Metadaten
Titel
An Adaptive Element-Free Galerkin Approach for Solving Singularly Perturbed Boundary Layer Problems
verfasst von
J. Kaur
V. Sangwan
Publikationsdatum
01.05.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Applied and Industrial Mathematics / Ausgabe 2/2022
Print ISSN: 1990-4789
Elektronische ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478922020041

Weitere Artikel der Ausgabe 2/2022

Journal of Applied and Industrial Mathematics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.