Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2010

01.12.2010 | Original Article

An adaptive gyroscope-based algorithm for temporal gait analysis

verfasst von: Barry R. Greene, Denise McGrath, Ross O’Neill, Karol J. O’Donovan, Adrian Burns, Brian Caulfield

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was −4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was −75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aminian K et al (2002) Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 35(5):689–699CrossRefPubMed Aminian K et al (2002) Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 35(5):689–699CrossRefPubMed
2.
Zurück zum Zitat Aminian K et al (2004) Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 20(1):102–107CrossRefPubMed Aminian K et al (2004) Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 20(1):102–107CrossRefPubMed
3.
Zurück zum Zitat Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160CrossRefPubMed Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160CrossRefPubMed
4.
Zurück zum Zitat Burns A et al (2010) SHIMMER™—a Wireless sensor platform for non-invasive biomedical research. IEEE Sens 10(9):1527–1534CrossRef Burns A et al (2010) SHIMMER™—a Wireless sensor platform for non-invasive biomedical research. IEEE Sens 10(9):1527–1534CrossRef
5.
Zurück zum Zitat Burns A et al (2010) Open shareable research platform for developing interoperable personal health systems. In: 1st AMA-IEEE medical technology conference on individualized medicine, Washington, DC Burns A et al (2010) Open shareable research platform for developing interoperable personal health systems. In: 1st AMA-IEEE medical technology conference on individualized medicine, Washington, DC
6.
Zurück zum Zitat Catalfamo P et al (2008) Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait Posture 28(3):420–426CrossRefPubMed Catalfamo P et al (2008) Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait Posture 28(3):420–426CrossRefPubMed
7.
Zurück zum Zitat Cutti A et al (2010) ‘Outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48(1):17–25CrossRefPubMed Cutti A et al (2010) ‘Outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48(1):17–25CrossRefPubMed
8.
Zurück zum Zitat de Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 53(12):2535–2543CrossRefPubMed de Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 53(12):2535–2543CrossRefPubMed
9.
Zurück zum Zitat Ferraris F, Grimaldi U, Parvis M (1995) Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers. Sens Mater 7(5):311–330 Ferraris F, Grimaldi U, Parvis M (1995) Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers. Sens Mater 7(5):311–330
10.
Zurück zum Zitat Frenkel-Toledo S et al (2005) Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil 31:2–23 Frenkel-Toledo S et al (2005) Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil 31:2–23
11.
Zurück zum Zitat Han J et al (2009) Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals. Med Biol Eng Comput 47(11):1155–1164CrossRefPubMed Han J et al (2009) Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals. Med Biol Eng Comput 47(11):1155–1164CrossRefPubMed
12.
Zurück zum Zitat Hausdorff JM et al (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82(1):262–269PubMed Hausdorff JM et al (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82(1):262–269PubMed
13.
Zurück zum Zitat Hreljac A, Marshall RN (2000) Algorithms to determine event timing during normal walking using kinematic data. J Biomech 33(6):783–786CrossRefPubMed Hreljac A, Marshall RN (2000) Algorithms to determine event timing during normal walking using kinematic data. J Biomech 33(6):783–786CrossRefPubMed
14.
Zurück zum Zitat Iasemidis LD et al (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627CrossRefPubMed Iasemidis LD et al (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627CrossRefPubMed
15.
Zurück zum Zitat Jasiewicz JM et al (2006) Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4):502–509CrossRefPubMed Jasiewicz JM et al (2006) Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4):502–509CrossRefPubMed
16.
Zurück zum Zitat Kotiadis D, Hermens HJ, Veltink PH (2010) Inertial gait phase detection for control of a drop foot stimulator: inertial sensing for gait phase detection. Med Eng Phys 32(4):287–297CrossRefPubMed Kotiadis D, Hermens HJ, Veltink PH (2010) Inertial gait phase detection for control of a drop foot stimulator: inertial sensing for gait phase detection. Med Eng Phys 32(4):287–297CrossRefPubMed
17.
Zurück zum Zitat Lorincz K et al (2007) Wearable wireless sensor network to assess clinical status in patients with neurological disorders. In: 6th International symposium on information processing in sensor networks Lorincz K et al (2007) Wearable wireless sensor network to assess clinical status in patients with neurological disorders. In: 6th International symposium on information processing in sensor networks
18.
Zurück zum Zitat McGrath MJ, Dishongh TJ (2009) A common personal health research platform—SHIMMER™ and BioMOBIUS™. Intel Technol J 13(3):122–147 McGrath MJ, Dishongh TJ (2009) A common personal health research platform—SHIMMER™ and BioMOBIUS™. Intel Technol J 13(3):122–147
19.
Zurück zum Zitat Miller A (2009) Gait event detection using a multilayer neural network. Gait Posture 29(4):542–545CrossRefPubMed Miller A (2009) Gait event detection using a multilayer neural network. Gait Posture 29(4):542–545CrossRefPubMed
20.
Zurück zum Zitat Najafi B et al (2002) Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng 49(8):843–851CrossRefPubMed Najafi B et al (2002) Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng 49(8):843–851CrossRefPubMed
21.
Zurück zum Zitat O’Connor CM et al (2007) Automatic detection of gait events using kinematic data. Gait Posture 25(3):469–474CrossRefPubMed O’Connor CM et al (2007) Automatic detection of gait events using kinematic data. Gait Posture 25(3):469–474CrossRefPubMed
22.
Zurück zum Zitat O’Donovan KJ et al (2009) SHIMMER: a new tool for temporal Gait analysis. In: Proceedings of IEEE engineering in medicine and biology, Minneapolis, MN O’Donovan KJ et al (2009) SHIMMER: a new tool for temporal Gait analysis. In: Proceedings of IEEE engineering in medicine and biology, Minneapolis, MN
23.
Zurück zum Zitat Rangayyan RM (2002) Biomedical signal analysis. IEEE Press/Wiley, New York, NY Rangayyan RM (2002) Biomedical signal analysis. IEEE Press/Wiley, New York, NY
24.
Zurück zum Zitat Sabatini AM et al (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494CrossRefPubMed Sabatini AM et al (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494CrossRefPubMed
25.
Zurück zum Zitat Salarian A et al (2004) Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 51(8):1434–1443CrossRefPubMed Salarian A et al (2004) Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 51(8):1434–1443CrossRefPubMed
26.
Zurück zum Zitat Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMed Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMed
27.
Zurück zum Zitat Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21(2):87–94CrossRefPubMed Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21(2):87–94CrossRefPubMed
28.
Zurück zum Zitat Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10CrossRefPubMed Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10CrossRefPubMed
Metadaten
Titel
An adaptive gyroscope-based algorithm for temporal gait analysis
verfasst von
Barry R. Greene
Denise McGrath
Ross O’Neill
Karol J. O’Donovan
Adrian Burns
Brian Caulfield
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2010
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-010-0692-0

Weitere Artikel der Ausgabe 12/2010

Medical & Biological Engineering & Computing 12/2010 Zur Ausgabe