Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.03.2020 | Original Article | Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

An adaptive kernel sparse representation-based classification

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 10/2020
Autoren:
Xuejun Wang, Wenjian Wang, Changqian Men
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In recent years, scholars have attached increasing attention to sparse representation. Based on compressed sensing and machine learning, sparse representation-based classification (SRC) has been extensively in classification. However, SRC is not suitable for samples with non-linear structures which arise in many practical applications. Meanwhile, sparsity is overemphasized by SRC, but the correlation information which is of great importance in classification is overlooked. To address these shortcomings, this study puts forward an adaptive kernel sparse representation-based classification (AKSRC). First, the samples were mapped to a high-dimensional feature space from the original feature space. Second, after selecting a suitable kernel function, a sample is represented as the linear combination of training samples of same class. Further more, the trace norm is adopted in AKSRC which is different from general approaches. It’s adaptive to the structure of dictionary which means that a better linear representation which has the most discriminative samples can be obtained. Therefore, AKSRC has more powerful classification ability. Finally, the advancement and effectiveness of the proposed AKSRC are verified by carrying out experiments on benchmark data sets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Zur Ausgabe