Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 10/2018

14.02.2018 | Original Paper

An efficient conversion of waste feather keratin into ecofriendly bioplastic film

verfasst von: Swati Sharma, Arun Gupta, Ashok Kumar, Chua Gek Kee, Hesam Kamyab, Syed Mohd Saufi

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Feathers biomass from poultry industry is considered as an important waste product, which creates serious environmental problems. In this study, keratin was extracted from waste chicken feathers using sodium sulfide as a reducing agent under optimized conditions. The extracted keratin particles were used to develop a bioploymeric film by adding microcrystalline cellulose as nano-additive agent. The calculated yield of 80.2% was obtained for keratin from feathers dry weight 25 g (w/w). The extracted keratin was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, wide-angle X-ray diffraction. The physiochemical characteristics of the feathers were compared with the keratin powder. The regenerated keratin particles preserved their chemical composition, thermal strength and stability after chemical extraction. The extracted keratin particles showed 10–20-µm spongy porous microparticles in SEM analysis. The keratin powder was used to synthesize a bioplastic film using glycerol (3.5%) and microcrystalline cellulose (0.2%) in NaOH for 48 h at 60 °C. The calculated thickness of bioplastic film was 1.12 × 10−4 mm with tensile strength of 3.62 ± 0.6 MPa. The Young’s modulus and break elongation for synthesized bioplastic film were 1.52 ± 0.34 MPa and 15.8 ± 2.2%, respectively. The feather and keratin showed maximum similarity index of 64.74% (l-alanyl, l-alanyl, l-alanine, p-nitroanilide) and 64.32% with d-pantethine, respectively, using OMNIC Specta software. Overall, the study presented a highly efficient method to convert the waste feather biomass into a bioplastic film which can be used in biopolymer, biomedical and pharmaceutical industries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Sharma S et al (2016) Extraction and characterization of keratin from chicken feather waste biomass: a study Sharma S et al (2016) Extraction and characterization of keratin from chicken feather waste biomass: a study
Zurück zum Zitat Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, Canetti M (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273CrossRef Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, Canetti M (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273CrossRef
Zurück zum Zitat Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475CrossRef Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475CrossRef
Zurück zum Zitat Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132:501–507CrossRef Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132:501–507CrossRef
Zurück zum Zitat Barone JR (2009) Lignocellulosic fiber-reinforced keratin polymer composites. J Polym Environ 17:143–151CrossRef Barone JR (2009) Lignocellulosic fiber-reinforced keratin polymer composites. J Polym Environ 17:143–151CrossRef
Zurück zum Zitat Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181CrossRef Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181CrossRef
Zurück zum Zitat Bertsch A, Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores Technol 96:1703–1708CrossRef Bertsch A, Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores Technol 96:1703–1708CrossRef
Zurück zum Zitat Brandelli A, Sala L, Kalil SJ (2015) Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int 73:3–12CrossRef Brandelli A, Sala L, Kalil SJ (2015) Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int 73:3–12CrossRef
Zurück zum Zitat Cao J (2000) Is the α–β transition of keratin a transition of α-helices to β-pleated sheets? Part I. In situ XRD studies. J Mol Struct 553:101–107CrossRef Cao J (2000) Is the α–β transition of keratin a transition of α-helices to β-pleated sheets? Part I. In situ XRD studies. J Mol Struct 553:101–107CrossRef
Zurück zum Zitat Cavello I, Cavalitto S, Hours R (2012) Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus. Appl Biochem Biotechnol 167:945–958CrossRef Cavello I, Cavalitto S, Hours R (2012) Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus. Appl Biochem Biotechnol 167:945–958CrossRef
Zurück zum Zitat Dahl KH, McKinley-McKee JS (1981) The reactivity of affinity labels: a kinetic study of the reaction of alkyl halides with thiolate anions—a model reaction for protein alkylation. Bioorg Chem 10:329–341CrossRef Dahl KH, McKinley-McKee JS (1981) The reactivity of affinity labels: a kinetic study of the reaction of alkyl halides with thiolate anions—a model reaction for protein alkylation. Bioorg Chem 10:329–341CrossRef
Zurück zum Zitat Edwards H, Hunt D, Sibley M (1998) FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochim Acta Part A Mol Biomol Spectrosc 54:745–757CrossRef Edwards H, Hunt D, Sibley M (1998) FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochim Acta Part A Mol Biomol Spectrosc 54:745–757CrossRef
Zurück zum Zitat Endo R, Kamei K, Iida I, Kawahara Y (2008) Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin. J Archaeol Sci 35:1240–1246CrossRef Endo R, Kamei K, Iida I, Kawahara Y (2008) Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin. J Archaeol Sci 35:1240–1246CrossRef
Zurück zum Zitat Eslahi N, Dadashian F, Nejad NH (2013) An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep Biochem Biotechnol 43:624–648CrossRef Eslahi N, Dadashian F, Nejad NH (2013) An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep Biochem Biotechnol 43:624–648CrossRef
Zurück zum Zitat Fang Y, Catron B, Zhang Y, Zhao L, Caruso J, Hu Q (2010) Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J Agric Food Chem 58:9731–9738CrossRef Fang Y, Catron B, Zhang Y, Zhao L, Caruso J, Hu Q (2010) Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J Agric Food Chem 58:9731–9738CrossRef
Zurück zum Zitat Feughelman M, Lyman D, Willis B (2002) The parallel helices of the intermediate filaments of α-keratin. Int J Biol Macromol 30:95–96CrossRef Feughelman M, Lyman D, Willis B (2002) The parallel helices of the intermediate filaments of α-keratin. Int J Biol Macromol 30:95–96CrossRef
Zurück zum Zitat Fu K, Griebenow K, Hsieh L, Klibanov AM, Langera R (1999) FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Controll Release 58:357–366CrossRef Fu K, Griebenow K, Hsieh L, Klibanov AM, Langera R (1999) FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Controll Release 58:357–366CrossRef
Zurück zum Zitat Garrido T, Leceta I, de la Caba K, Guerrero P (2018) Chicken feathers as a natural source of sulphur to develop sustainable protein films with enhanced properties. Int J Biol Macromol 106:523–531CrossRef Garrido T, Leceta I, de la Caba K, Guerrero P (2018) Chicken feathers as a natural source of sulphur to develop sustainable protein films with enhanced properties. Int J Biol Macromol 106:523–531CrossRef
Zurück zum Zitat Guo Y, Tang H, Li G, Xie D (2014) Effects of cow dung biochar amendment on adsorption and leaching of nutrient from an acid yellow soil irrigated with biogas slurry. Water Air Soil Pollut 225:1820CrossRef Guo Y, Tang H, Li G, Xie D (2014) Effects of cow dung biochar amendment on adsorption and leaching of nutrient from an acid yellow soil irrigated with biogas slurry. Water Air Soil Pollut 225:1820CrossRef
Zurück zum Zitat Ha S-W, Tonelli AE, Hudson SM (2005) Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6:1722–1731CrossRef Ha S-W, Tonelli AE, Hudson SM (2005) Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6:1722–1731CrossRef
Zurück zum Zitat Happey F, Wormell R (1949) 53—Regenerated keratin fibres from wool. J Text Inst Trans 40:T855–T869CrossRef Happey F, Wormell R (1949) 53—Regenerated keratin fibres from wool. J Text Inst Trans 40:T855–T869CrossRef
Zurück zum Zitat He M, Zhang B, Dou Y, Yin G, Cui Y (2017) Blend modification of feather keratin‐based films using sodium alginate. J Appl Polym Sci 134:44680 He M, Zhang B, Dou Y, Yin G, Cui Y (2017) Blend modification of feather keratin‐based films using sodium alginate. J Appl Polym Sci 134:44680
Zurück zum Zitat Idris A, Vijayaraghavan R, Rana UA, Fredericks D, Patti A, MacFarlane D (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534CrossRef Idris A, Vijayaraghavan R, Rana UA, Fredericks D, Patti A, MacFarlane D (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534CrossRef
Zurück zum Zitat Idris A, Vijayaraghavan R, Patti A, MacFarlane D (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894CrossRef Idris A, Vijayaraghavan R, Patti A, MacFarlane D (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894CrossRef
Zurück zum Zitat Ji Y, Chen J, Lv J, Li Z, Xing L, Ding S (2014) Extraction of keratin with ionic liquids from poultry feather. Sep Purif Technol 132:577–583CrossRef Ji Y, Chen J, Lv J, Li Z, Xing L, Ding S (2014) Extraction of keratin with ionic liquids from poultry feather. Sep Purif Technol 132:577–583CrossRef
Zurück zum Zitat Jones CB, Mecham D (1943) The dispersion of keratins. I. Studies on the dispersion and degradation of certain keratins by sodium sulfide. Arch Biochem 2:209CrossRef Jones CB, Mecham D (1943) The dispersion of keratins. I. Studies on the dispersion and degradation of certain keratins by sodium sulfide. Arch Biochem 2:209CrossRef
Zurück zum Zitat Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R (2017) Statistical investigation of extraction parameters of keratin from chicken feather using design-expert. 3 Biotech 7:127CrossRef Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R (2017) Statistical investigation of extraction parameters of keratin from chicken feather using design-expert. 3 Biotech 7:127CrossRef
Zurück zum Zitat Khosa MA, Ullah A (2014) In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater 278:360–371CrossRef Khosa MA, Ullah A (2014) In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater 278:360–371CrossRef
Zurück zum Zitat Lasekan A, Bakar FA, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manag 33:552–565CrossRef Lasekan A, Bakar FA, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manag 33:552–565CrossRef
Zurück zum Zitat Lee H et al (2015) Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromol Res 23:300–308CrossRef Lee H et al (2015) Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromol Res 23:300–308CrossRef
Zurück zum Zitat Ma B, Qiao X, Hou X, Yang Y (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621CrossRef Ma B, Qiao X, Hou X, Yang Y (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621CrossRef
Zurück zum Zitat Ma B, Chen W, Qiao X, Pan G, Jakpa W, Hou X, Yang Y (2017) Tunable wettability and tensile strength of chitosan membranes using keratin microparticles as reinforcement. J Appl Polym Sci 134:44667 Ma B, Chen W, Qiao X, Pan G, Jakpa W, Hou X, Yang Y (2017) Tunable wettability and tensile strength of chitosan membranes using keratin microparticles as reinforcement. J Appl Polym Sci 134:44667
Zurück zum Zitat Martelli SM, Moore G, Paes SS, Gandolfo C, Laurindo JB (2006a) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT Food Sci Technol 39:292–301CrossRef Martelli SM, Moore G, Paes SS, Gandolfo C, Laurindo JB (2006a) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT Food Sci Technol 39:292–301CrossRef
Zurück zum Zitat Martelli SM, Moore GRP, Laurindo JB (2006b) Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J Polym Environ 14:215–222CrossRef Martelli SM, Moore GRP, Laurindo JB (2006b) Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J Polym Environ 14:215–222CrossRef
Zurück zum Zitat Martinez-Hernandez AL, Velasco-Santos C, De Icaza M, Castano VM (2005) Microstructural characterisation of keratin fibres from chicken feathers. Int J Environ Pollut 23:162–178CrossRef Martinez-Hernandez AL, Velasco-Santos C, De Icaza M, Castano VM (2005) Microstructural characterisation of keratin fibres from chicken feathers. Int J Environ Pollut 23:162–178CrossRef
Zurück zum Zitat Menefee E, Yee G (1965) Thermally-induced structural changes in wool. Text Res J 35:801–812CrossRef Menefee E, Yee G (1965) Thermally-induced structural changes in wool. Text Res J 35:801–812CrossRef
Zurück zum Zitat Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca RatonCrossRef Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Mokrejs P, Svoboda P, Hrncirik J, Janacova D, Vasek V (2010) Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag Res 29(3):260–267CrossRef Mokrejs P, Svoboda P, Hrncirik J, Janacova D, Vasek V (2010) Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag Res 29(3):260–267CrossRef
Zurück zum Zitat Moore GRP, Martelli SM, Gandolfo C, do Amaral Sobral PJ, Laurindo JB (2006) Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocoll 20:975–982CrossRef Moore GRP, Martelli SM, Gandolfo C, do Amaral Sobral PJ, Laurindo JB (2006) Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocoll 20:975–982CrossRef
Zurück zum Zitat Moritz J, Latshaw J (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult Sci 80:79–86CrossRef Moritz J, Latshaw J (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult Sci 80:79–86CrossRef
Zurück zum Zitat Nishikawa N, Tanizawa Y, Tanaka S, Horiguchi Y, Asakura T (1998) Structural change of keratin protein in human hair by permanent waving treatment. Polymer 39:3835–3840CrossRef Nishikawa N, Tanizawa Y, Tanaka S, Horiguchi Y, Asakura T (1998) Structural change of keratin protein in human hair by permanent waving treatment. Polymer 39:3835–3840CrossRef
Zurück zum Zitat Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol 66:1–11CrossRef Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol 66:1–11CrossRef
Zurück zum Zitat Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy. Cengage Learning, Boston Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy. Cengage Learning, Boston
Zurück zum Zitat Pillai C (2010) Challenges for natural monomers and polymers: novel design strategies and engineering to develop advanced polymers. Des Monomers Polym 13:87–121CrossRef Pillai C (2010) Challenges for natural monomers and polymers: novel design strategies and engineering to develop advanced polymers. Des Monomers Polym 13:87–121CrossRef
Zurück zum Zitat Poole AJ, Church JS (2015) The effects of physical and chemical treatments on Na2S produced feather keratin films. Int J Biol Macromol 73:99–108CrossRef Poole AJ, Church JS (2015) The effects of physical and chemical treatments on Na2S produced feather keratin films. Int J Biol Macromol 73:99–108CrossRef
Zurück zum Zitat Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8CrossRef Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8CrossRef
Zurück zum Zitat Poole AJ, Lyons RE, Church JS (2011) Dissolving feather keratin using sodium sulfide for bio-polymer applications. J Polym Environ 19:995–1004CrossRef Poole AJ, Lyons RE, Church JS (2011) Dissolving feather keratin using sodium sulfide for bio-polymer applications. J Polym Environ 19:995–1004CrossRef
Zurück zum Zitat Popescu C, Augustin P (1999) Effect of chlorination treatment on the thermogravimetric behaviour of wool fibres. J Therm Anal Calorim 57:509–515CrossRef Popescu C, Augustin P (1999) Effect of chlorination treatment on the thermogravimetric behaviour of wool fibres. J Therm Anal Calorim 57:509–515CrossRef
Zurück zum Zitat Rad ZP, Tavanai H, Moradi A (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56CrossRef Rad ZP, Tavanai H, Moradi A (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56CrossRef
Zurück zum Zitat Rao DR, Gupta V (1992) Crystallite orientation in wool fibers. J Appl Polym Sci 46:1109–1112CrossRef Rao DR, Gupta V (1992) Crystallite orientation in wool fibers. J Appl Polym Sci 46:1109–1112CrossRef
Zurück zum Zitat Reddy N, Yang Y (2007) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15:81–87CrossRef Reddy N, Yang Y (2007) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15:81–87CrossRef
Zurück zum Zitat Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334CrossRef Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334CrossRef
Zurück zum Zitat Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2001a) Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem 49:221–230CrossRef Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2001a) Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem 49:221–230CrossRef
Zurück zum Zitat Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2001b) Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J Colloid Interface Sci 240:30–39CrossRef Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2001b) Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J Colloid Interface Sci 240:30–39CrossRef
Zurück zum Zitat Senoz E, Wool RP (2010) Microporous carbon–nitrogen fibers from keratin fibers by pyrolysis. J Appl Polym Sci 118:1752–1765 Senoz E, Wool RP (2010) Microporous carbon–nitrogen fibers from keratin fibers by pyrolysis. J Appl Polym Sci 118:1752–1765
Zurück zum Zitat Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59:e16150684 Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59:e16150684
Zurück zum Zitat Sharma S, Gupta A, Chik SMSBT, Kee CYG, Poddar PK (2017b) Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012013 Sharma S, Gupta A, Chik SMSBT, Kee CYG, Poddar PK (2017b) Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012013
Zurück zum Zitat Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825CrossRef Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825CrossRef
Zurück zum Zitat Tesfaye T, Sithole B, Ramjugernath D, Chunilall V (2017) Valorisation of chicken feathers: characterisation of physical properties and morphological structure. J Clean Prod 149:349–365CrossRef Tesfaye T, Sithole B, Ramjugernath D, Chunilall V (2017) Valorisation of chicken feathers: characterisation of physical properties and morphological structure. J Clean Prod 149:349–365CrossRef
Zurück zum Zitat Tiwary E, Gupta R (2010) Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Biores Technol 101:6103–6110CrossRef Tiwary E, Gupta R (2010) Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Biores Technol 101:6103–6110CrossRef
Zurück zum Zitat Touaibia D, Benayada B (2005) Removal of mercury (II) from aqueous solution by adsorption on keratin powder prepared from Algerian sheep hooves. Desalination 186:75–80CrossRef Touaibia D, Benayada B (2005) Removal of mercury (II) from aqueous solution by adsorption on keratin powder prepared from Algerian sheep hooves. Desalination 186:75–80CrossRef
Zurück zum Zitat Ullah A, Vasanthan T, Bressler D, Elias AL, Wu J (2011) Bioplastics from feather quill. Biomacromolecules 12:3826–3832CrossRef Ullah A, Vasanthan T, Bressler D, Elias AL, Wu J (2011) Bioplastics from feather quill. Biomacromolecules 12:3826–3832CrossRef
Zurück zum Zitat Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305CrossRef Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305CrossRef
Zurück zum Zitat Wang Y-X, Cao X-J (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47:896–899CrossRef Wang Y-X, Cao X-J (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47:896–899CrossRef
Zurück zum Zitat Wojciechowska E, Włochowicz A, Wesełucha-Birczyńska A (1999) Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. J Mol Struct 511:307–318CrossRef Wojciechowska E, Włochowicz A, Wesełucha-Birczyńska A (1999) Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. J Mol Struct 511:307–318CrossRef
Zurück zum Zitat Xu W, Ke G, Wu J, Wang X (2006) Modification of wool fiber using steam explosion. Eur Polym J 42:2168–2173CrossRef Xu W, Ke G, Wu J, Wang X (2006) Modification of wool fiber using steam explosion. Eur Polym J 42:2168–2173CrossRef
Zurück zum Zitat Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31:439–444CrossRef Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31:439–444CrossRef
Zurück zum Zitat Yin X-C, Li F-Y, He Y-F, Wang Y, Wang R-M (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1:528–536CrossRef Yin X-C, Li F-Y, He Y-F, Wang Y, Wang R-M (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1:528–536CrossRef
Zurück zum Zitat Zhang J et al (2013) Isolation and characterization of biofunctional keratin particles extracted from wool wastes. Powder Technol 246:356–362CrossRef Zhang J et al (2013) Isolation and characterization of biofunctional keratin particles extracted from wool wastes. Powder Technol 246:356–362CrossRef
Zurück zum Zitat Zhang Y, Zhao W, Yang R (2015) Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain Chem Eng 3:2036–2042CrossRef Zhang Y, Zhao W, Yang R (2015) Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain Chem Eng 3:2036–2042CrossRef
Zurück zum Zitat Zoccola M, Aluigi A, Tonin C (2009) Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 938:35–40CrossRef Zoccola M, Aluigi A, Tonin C (2009) Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 938:35–40CrossRef
Metadaten
Titel
An efficient conversion of waste feather keratin into ecofriendly bioplastic film
verfasst von
Swati Sharma
Arun Gupta
Ashok Kumar
Chua Gek Kee
Hesam Kamyab
Syed Mohd Saufi
Publikationsdatum
14.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 10/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-018-1498-2

Weitere Artikel der Ausgabe 10/2018

Clean Technologies and Environmental Policy 10/2018 Zur Ausgabe