Skip to main content
Erschienen in: Journal of Scientific Computing 2/2014

01.11.2014

An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation

verfasst von: Qianhuan Li, Zhenhua Chai, Baochang Shi

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an efficient lattice Boltzmann model for n-dimensional steady convection–diffusion equation with variable coefficients is proposed through modifying the equilibrium distribution function properly, and the Chapman–Enskog analysis shows that the steady convection–diffusion equation with variable coefficients can be recovered exactly. Detailed simulations are performed to test the model, and the results show that the accuracy and efficiency of the present model are better than previous models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deolmi, G., Marcuzzi, F., Morandi Cecchi, M.: The best-approximation weighted-residuals method for the steady convection–diffusion–reaction problem. Math. Comput. Simul. 82, 144–162 (2011)MathSciNetCrossRefMATH Deolmi, G., Marcuzzi, F., Morandi Cecchi, M.: The best-approximation weighted-residuals method for the steady convection–diffusion–reaction problem. Math. Comput. Simul. 82, 144–162 (2011)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Brill, S., Smith, E.: Analytical upstream collocation solution of a quadratically forced steady-state convection–diffusion equation. Int. J. Numer. Method. H. 22(4), 436–457 (2012)CrossRef Brill, S., Smith, E.: Analytical upstream collocation solution of a quadratically forced steady-state convection–diffusion equation. Int. J. Numer. Method. H. 22(4), 436–457 (2012)CrossRef
3.
Zurück zum Zitat Galligani, E.: A nonlinearity lagging for the solution of nonlinear steady state reaction diffusion problems. Int. J. Nonlinear Sci. Num. 18, 567–583 (2013)MathSciNetCrossRefMATH Galligani, E.: A nonlinearity lagging for the solution of nonlinear steady state reaction diffusion problems. Int. J. Nonlinear Sci. Num. 18, 567–583 (2013)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Angelini, O., Brenner, K., Hilhorst, D.: A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation. Numer. Math. 123, 219–257 (2013)MathSciNetCrossRefMATH Angelini, O., Brenner, K., Hilhorst, D.: A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation. Numer. Math. 123, 219–257 (2013)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bause, M., Schwegler, K.: Higher order finite element approximation of systems of convection–diffusion–reaction equations with small diffusion. J. Comput. Appl. Math. 246, 52–64 (2013)MathSciNetCrossRefMATH Bause, M., Schwegler, K.: Higher order finite element approximation of systems of convection–diffusion–reaction equations with small diffusion. J. Comput. Appl. Math. 246, 52–64 (2013)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Method. Appl. M. 156, 185–210 (1998)MathSciNetCrossRefMATH Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Method. Appl. M. 156, 185–210 (1998)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Egger, H., Schoberl, J.: A hybrid mixed discontinuous galerkin finite-element method for convection–diffusion problems. IMA. J. Numer. Anal. 30, 1206–1234 (2010)MathSciNetCrossRefMATH Egger, H., Schoberl, J.: A hybrid mixed discontinuous galerkin finite-element method for convection–diffusion problems. IMA. J. Numer. Anal. 30, 1206–1234 (2010)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRef
9.
Zurück zum Zitat Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRef Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRef
10.
Zurück zum Zitat Qian, Y.H., Succi, S., Orszag, S.A.: Lattice BGK models for Navier–Stokes equation. Annu. Rev. Comput. Phys. 3, 195–242 (1995)MathSciNetCrossRef Qian, Y.H., Succi, S., Orszag, S.A.: Lattice BGK models for Navier–Stokes equation. Annu. Rev. Comput. Phys. 3, 195–242 (1995)MathSciNetCrossRef
11.
Zurück zum Zitat Wang, M., Wang, J.K., Pan, N.: Three-dimensional effect on the effective thermal conductivity of porous media. J. Phys. D. Appl. Phys. 40, 260–265 (2007)CrossRef Wang, M., Wang, J.K., Pan, N.: Three-dimensional effect on the effective thermal conductivity of porous media. J. Phys. D. Appl. Phys. 40, 260–265 (2007)CrossRef
12.
Zurück zum Zitat Dou, Z., Zhou, Z.F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid FL. 42, 23–32 (2013)CrossRef Dou, Z., Zhou, Z.F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid FL. 42, 23–32 (2013)CrossRef
13.
Zurück zum Zitat Guo, Z.L., Shi, B.C., Zheng, C.G.: Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows. Phil. Trans. R. Soc. A 369, 2283–2291 (2011)MathSciNetCrossRefMATH Guo, Z.L., Shi, B.C., Zheng, C.G.: Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows. Phil. Trans. R. Soc. A 369, 2283–2291 (2011)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Dellar, P.J.: Electromagnetic waves in lattice Boltzmann magnetohydrodynamics. Europhys. Lett. 90, 50002 (2010)CrossRef Dellar, P.J.: Electromagnetic waves in lattice Boltzmann magnetohydrodynamics. Europhys. Lett. 90, 50002 (2010)CrossRef
15.
Zurück zum Zitat Chai, Z.H., Shi, B.C.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)CrossRefMATH Chai, Z.H., Shi, B.C.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)CrossRefMATH
16.
Zurück zum Zitat Wang, J.K., Wang, M.R., Li, Z.X.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)CrossRef Wang, J.K., Wang, M.R., Li, Z.X.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)CrossRef
17.
Zurück zum Zitat Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)CrossRef Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)CrossRef
18.
Zurück zum Zitat Hupp, D., Mendoza, M., Bouras, I., Succi, S.: Relativistic lattice Boltzmann method for quark-gluon plasma simulations. Phys. Rev. D 84, 125015 (2011)CrossRef Hupp, D., Mendoza, M., Bouras, I., Succi, S.: Relativistic lattice Boltzmann method for quark-gluon plasma simulations. Phys. Rev. D 84, 125015 (2011)CrossRef
19.
Zurück zum Zitat Ashrafizaadeh, M., Bakhshaei, H.: A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. Appl. 58, 1045–1054 (2009)MathSciNetCrossRefMATH Ashrafizaadeh, M., Bakhshaei, H.: A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. Appl. 58, 1045–1054 (2009)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Joshi, A.S., Sun, Y.: Multiphase lattice Boltzmann method for particle suspensions. Phys. Rev. E 79, 066703 (2009)CrossRef Joshi, A.S., Sun, Y.: Multiphase lattice Boltzmann method for particle suspensions. Phys. Rev. E 79, 066703 (2009)CrossRef
21.
Zurück zum Zitat He, X.Y., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129, 158–166 (2000)CrossRefMATH He, X.Y., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129, 158–166 (2000)CrossRefMATH
22.
Zurück zum Zitat Li, Q.J., Zheng, Z.S., Wang, S., Liu, J.K.: A multilevel finite difference scheme for one-dimensional Burgers equation derived from the lattice Boltzmann method. J. Appl. Math. 2012, 925920 (2012) Li, Q.J., Zheng, Z.S., Wang, S., Liu, J.K.: A multilevel finite difference scheme for one-dimensional Burgers equation derived from the lattice Boltzmann method. J. Appl. Math. 2012, 925920 (2012)
23.
Zurück zum Zitat Yermakou, V., Succi, S.: A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation. Physica. A 391, 4557–4563 (2012)CrossRef Yermakou, V., Succi, S.: A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation. Physica. A 391, 4557–4563 (2012)CrossRef
24.
Zurück zum Zitat Blaak, R., Sloot, P.M.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)MathSciNetCrossRefMATH Blaak, R., Sloot, P.M.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Feng, H.Y., Zhang, X.Q., Peng, Y.H.: A lattice Boltzmann model for elliptic equations with variable coefficient. Appl. Math. Comput. 219, 2798–2807 (2012)MathSciNetCrossRef Feng, H.Y., Zhang, X.Q., Peng, Y.H.: A lattice Boltzmann model for elliptic equations with variable coefficient. Appl. Math. Comput. 219, 2798–2807 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)CrossRef Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)CrossRef
28.
Zurück zum Zitat Chai, Z.H., Zhao, T.S.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)CrossRef Chai, Z.H., Zhao, T.S.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)CrossRef
29.
Zurück zum Zitat Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)MathSciNetCrossRefMATH Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)MathSciNetCrossRefMATH
30.
Zurück zum Zitat van der Sman, R.G.M., Ernst, M.H.: Convection–diffusion lattice Boltzmann scheme for irregular lattice. J. Comput. Phys. 160, 766–782 (2000)MathSciNetCrossRefMATH van der Sman, R.G.M., Ernst, M.H.: Convection–diffusion lattice Boltzmann scheme for irregular lattice. J. Comput. Phys. 160, 766–782 (2000)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)CrossRef Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)CrossRef
32.
Zurück zum Zitat Xiang, X.Q., Wang, Z.H., Shi, B.C.: Modified lattice Boltzmann scheme for nonlinear convection diffusion equations. Int. J. Nonlinear Sci. Num. 17, 2415–2425 (2012)MathSciNetCrossRefMATH Xiang, X.Q., Wang, Z.H., Shi, B.C.: Modified lattice Boltzmann scheme for nonlinear convection diffusion equations. Int. J. Nonlinear Sci. Num. 17, 2415–2425 (2012)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation methodfor velocity and pressure boundary conditionsin the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)CrossRef Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation methodfor velocity and pressure boundary conditionsin the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)CrossRef
34.
Zurück zum Zitat Gao, Z., Shen, Y.Q.: Analysis and application of high resolution numerical perturbation algorithm for convective–diffusion equation. Chin. Phys. Lett. 29, 104702 (2012)MathSciNetCrossRef Gao, Z., Shen, Y.Q.: Analysis and application of high resolution numerical perturbation algorithm for convective–diffusion equation. Chin. Phys. Lett. 29, 104702 (2012)MathSciNetCrossRef
Metadaten
Titel
An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation
verfasst von
Qianhuan Li
Zhenhua Chai
Baochang Shi
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9827-z

Weitere Artikel der Ausgabe 2/2014

Journal of Scientific Computing 2/2014 Zur Ausgabe

Premium Partner