Skip to main content
Erschienen in: Quantum Information Processing 3/2024

01.03.2024

An efficient quantum algorithm for simulating polynomial dynamical systems

verfasst von: Amit Surana, Abeynaya Gnanasekaran, Tuhin Sahai

Erschienen in: Quantum Information Processing | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present an efficient quantum algorithm to simulate nonlinear differential equations with polynomial vector fields of arbitrary (finite) degree on quantum platforms. Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise extensively in science and engineering applications. Examples of ODE models include mechanics of rigid bodies, molecular dynamics, chemical kinetics, and epidemiology. Nonlinear PDEs arise in fluid dynamics, combustion, weather forecasting, structural mechanics, plasma dynamics, and finance to name a few. In practice, it is challenging to simulate such equations on classical computers due to high dimensionality, stiffness arising from multiple spatial/temporal scales, nonlinearities, and chaotic dynamics. Typically, high performance computing is used to mitigate computational challenges and involves approximations for tractability. For sparse n-dimensional linear ODEs, quantum algorithms have been developed which can produce a quantum state proportional to the solution in \(\textsf {poly}(\log (n))\)) time using the quantum linear systems algorithm (QLSA). Recently, this framework was extended to systems of nonlinear ODEs with quadratic polynomial vector fields by applying Carleman linearization that enables the embedding of the quadratic system into an approximate linear form. A detailed complexity analysis was conducted which showed significant computational advantage under certain conditions. We present an extension of this algorithm to deal with systems of nonlinear ODEs with k-th degree polynomial vector fields for arbitrary (finite) values of k. The steps involve: (1) mapping the k-th degree polynomial ODE to a higher-dimensional quadratic polynomial ODE; (2) applying Carleman linearization to transform the quadratic ODE to an infinite-dimensional system of linear ODEs; (3) truncating and discretizing the linear ODE and solving using the forward Euler method and QLSA. Alternatively, one could apply Carleman linearization directly to the k-th degree polynomial ODE, resulting in a system of infinite-dimensional linear ODEs, and then apply step 3. This solution route can be computationally more efficient. We present detailed complexity analysis of the proposed algorithms and prove polynomial scaling of runtime on k. We demonstrate the computational framework on a numerical example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A: Math. Theor. 47(10), 105301 (2014)ADSMathSciNetCrossRef Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A: Math. Theor. 47(10), 105301 (2014)ADSMathSciNetCrossRef
2.
Zurück zum Zitat Berry, D.W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356(3), 1057–1081 (2017)ADSMathSciNetCrossRef Berry, D.W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356(3), 1057–1081 (2017)ADSMathSciNetCrossRef
3.
Zurück zum Zitat Childs, A.M., Liu, J.-P.: Quantum spectral methods for differential equations. Commun. Math. Phys. 375(2), 1427–1457 (2020)ADSMathSciNetCrossRef Childs, A.M., Liu, J.-P.: Quantum spectral methods for differential equations. Commun. Math. Phys. 375(2), 1427–1457 (2020)ADSMathSciNetCrossRef
4.
5.
Zurück zum Zitat Childs, A.M., Liu, J.-P., Ostrander, A.: High-precision quantum algorithms for partial differential equations. Quantum 5, 574 (2021)CrossRef Childs, A.M., Liu, J.-P., Ostrander, A.: High-precision quantum algorithms for partial differential equations. Quantum 5, 574 (2021)CrossRef
6.
Zurück zum Zitat Costa, P.C., Jordan, S., Ostrander, A.: Quantum algorithm for simulating the wave equation. Phys. Rev. A 99(1), 012323 (2019)ADSCrossRef Costa, P.C., Jordan, S., Ostrander, A.: Quantum algorithm for simulating the wave equation. Phys. Rev. A 99(1), 012323 (2019)ADSCrossRef
7.
Zurück zum Zitat Linden, N., Montanaro, A., Shao, C.: Quantum vs. classical algorithms for solving the heat equation. arXiv preprint arXiv:2004.06516 (2020) Linden, N., Montanaro, A., Shao, C.: Quantum vs. classical algorithms for solving the heat equation. arXiv preprint arXiv:​2004.​06516 (2020)
8.
Zurück zum Zitat Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A 93(3), 032324 (2016)ADSCrossRef Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A 93(3), 032324 (2016)ADSCrossRef
9.
Zurück zum Zitat Leyton, S.K., Osborne, T.J.: A quantum algorithm to solve nonlinear differential equations. arXiv preprint arXiv:0812.4423 (2008) Leyton, S.K., Osborne, T.J.: A quantum algorithm to solve nonlinear differential equations. arXiv preprint arXiv:​0812.​4423 (2008)
10.
Zurück zum Zitat Liu, J.-P., Kolden, H.Ø., Krovi, H.K., Loureiro, N.F., Trivisa, K., Childs, A.M.: Efficient quantum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci. 118(35), 2026805118 (2021)MathSciNetCrossRef Liu, J.-P., Kolden, H.Ø., Krovi, H.K., Loureiro, N.F., Trivisa, K., Childs, A.M.: Efficient quantum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci. 118(35), 2026805118 (2021)MathSciNetCrossRef
11.
Zurück zum Zitat Jin, S., Liu, N., Yu, Y.: Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations. arXiv preprint arXiv:2209.08478 (2022) Jin, S., Liu, N., Yu, Y.: Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations. arXiv preprint arXiv:​2209.​08478 (2022)
12.
Zurück zum Zitat Joseph, I.: Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics. Phys. Rev. Res. 2(4), 043102 (2020)MathSciNetCrossRef Joseph, I.: Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics. Phys. Rev. Res. 2(4), 043102 (2020)MathSciNetCrossRef
13.
Zurück zum Zitat Lin, Y.T., Lowrie, R.B., Aslangil, D., Subaşı, Y., Sornborger, A.T.: Koopman–von Neumann mechanics and the Koopman representation: a perspective on solving nonlinear dynamical systems with quantum computers. arXiv preprint arXiv:2202.02188 (2022) Lin, Y.T., Lowrie, R.B., Aslangil, D., Subaşı, Y., Sornborger, A.T.: Koopman–von Neumann mechanics and the Koopman representation: a perspective on solving nonlinear dynamical systems with quantum computers. arXiv preprint arXiv:​2202.​02188 (2022)
14.
Zurück zum Zitat Giannakis, D., Ourmazd, A., Pfeffer, P., Schumacher, J., Slawinska, J.: Embedding classical dynamics in a quantum computer. Phys. Rev. A 105(5), 052404 (2022)ADSMathSciNetCrossRef Giannakis, D., Ourmazd, A., Pfeffer, P., Schumacher, J., Slawinska, J.: Embedding classical dynamics in a quantum computer. Phys. Rev. A 105(5), 052404 (2022)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Amini, A., Zheng, C., Sun, Q., Motee, N.: Carleman linearization of nonlinear systems and its finite-section approximations. arXiv preprint arXiv:2207.07755 (2022) Amini, A., Zheng, C., Sun, Q., Motee, N.: Carleman linearization of nonlinear systems and its finite-section approximations. arXiv preprint arXiv:​2207.​07755 (2022)
18.
Zurück zum Zitat Kowalski, K., Steeb, W.-H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (1991)CrossRef Kowalski, K., Steeb, W.-H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (1991)CrossRef
19.
Zurück zum Zitat Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)MathSciNetCrossRef Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. Assoc. Phys. Teach. (2002) Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. Assoc. Phys. Teach. (2002)
21.
Zurück zum Zitat Volpert, V.: Elliptic Partial Differential Equations, vol. 2. Springer, France (2014)CrossRef Volpert, V.: Elliptic Partial Differential Equations, vol. 2. Springer, France (2014)CrossRef
22.
Zurück zum Zitat Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion–Convection Reaction, vol. 60. Springer, Germany (2004)CrossRef Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion–Convection Reaction, vol. 60. Springer, Germany (2004)CrossRef
23.
Zurück zum Zitat Bose, I., Pal, M., Karmakar, C.: Allee dynamics: growth, extinction and range expansion. Int. J. Mod. Phys. C 28(06), 1750074 (2017)ADSCrossRef Bose, I., Pal, M., Karmakar, C.: Allee dynamics: growth, extinction and range expansion. Int. J. Mod. Phys. C 28(06), 1750074 (2017)ADSCrossRef
24.
Zurück zum Zitat Persova, M.G., Soloveichik, Y.G., Belov, V.K., Kiselev, D.S., Vagin, D.V., Domnikov, P.A., Patrushev, I.I., Kurskiy, D.N.: Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles. Acta Astronaut. 136, 312–331 (2017)ADSCrossRef Persova, M.G., Soloveichik, Y.G., Belov, V.K., Kiselev, D.S., Vagin, D.V., Domnikov, P.A., Patrushev, I.I., Kurskiy, D.N.: Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles. Acta Astronaut. 136, 312–331 (2017)ADSCrossRef
25.
Zurück zum Zitat Steinfeld, J.I., Francisco, J.S., Hase, W.L.: Chemical Kinetics and Dynamics. Prentice Hall, Upper Saddle River (1999) Steinfeld, J.I., Francisco, J.S., Hase, W.L.: Chemical Kinetics and Dynamics. Prentice Hall, Upper Saddle River (1999)
26.
Zurück zum Zitat Cisneros-Velarde, P., Bullo, F.: Multigroup SIS epidemics with simplicial and higher order interactions. IEEE Trans. Control Netw. Syst. 9(2), 695–705 (2021)MathSciNetCrossRef Cisneros-Velarde, P., Bullo, F.: Multigroup SIS epidemics with simplicial and higher order interactions. IEEE Trans. Control Netw. Syst. 9(2), 695–705 (2021)MathSciNetCrossRef
27.
Zurück zum Zitat Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)ADSMathSciNetCrossRef Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)ADSMathSciNetCrossRef
28.
Zurück zum Zitat Chen, C., Surana, A., Bloch, A.M., Rajapakse, I.: Controllability of hypergraphs. IEEE Trans. Netw. Sci. Eng. 8(2), 1646–1657 (2021)MathSciNetCrossRef Chen, C., Surana, A., Bloch, A.M., Rajapakse, I.: Controllability of hypergraphs. IEEE Trans. Netw. Sci. Eng. 8(2), 1646–1657 (2021)MathSciNetCrossRef
29.
Zurück zum Zitat Li, X., Yin, X., Wiebe, N., Chun, J., Schenter, G.K., Cheung, M.S., Mülmenstädt, J.: Potential quantum advantage for simulation of fluid dynamics. arXiv preprint arXiv:2303.16550 (2023) Li, X., Yin, X., Wiebe, N., Chun, J., Schenter, G.K., Cheung, M.S., Mülmenstädt, J.: Potential quantum advantage for simulation of fluid dynamics. arXiv preprint arXiv:​2303.​16550 (2023)
Metadaten
Titel
An efficient quantum algorithm for simulating polynomial dynamical systems
verfasst von
Amit Surana
Abeynaya Gnanasekaran
Tuhin Sahai
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 3/2024
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04311-2

Weitere Artikel der Ausgabe 3/2024

Quantum Information Processing 3/2024 Zur Ausgabe