Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2018

05.02.2018

An electrolyte to improve the deep charge–discharge performance of LiNi0.8Co0.15Al0.05O2 cathode

verfasst von: Hongming Zhou, Zhaohui Yang, Demin Xiao, Kaiwen Xiao, Jian Li

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrochemical behaviors of electrolytes, 1 M lithium difluoro(oxalate)borate (LiODFB) in sulfone and dimethyl carbonate blends, have been investigated for LiNi0.8Co0.15Al0.05O2 (NCA) cathode. The viscosity and conductivity tests have been used to investigate the relationship among the solution viscosity, conductivity and electrolyte composition. Through linear sweep voltammetry, cyclic voltammetry, AC impedance and charge–discharge test, we have compared the electrochemical stability of different electrolytes, the reversibility, capacity, cycling performance, rate capability and interfacial impedance of NCA cathode in different electrolytes. SEM, XPS, TEM and FTIR analyses have utilized to discuss the surface nature of NCA cathode after cycles at deep charge–discharge voltage. These results demonstrate that 1 M LiODFB/(SL–DMC, 4:6) electrolyte shows the maximum conductivity value (κmax = 4.25 S cm−1), proper viscosity (η = 3.43 mPa s) and high oxidative decomposition potential (5.66 V) and NCA cathode can present superior reversibility, higher columbic efficiency during cycles in this electrolyte than in 1 M LiPF6/(EC–DMC, 3:7) electrolyte. Besides, a dense deposition layer is formed on the NCA cathode when NCA/Li cells cycle in 1 M LiODFB/(SL–DMC, 4:6) electrolyte with deep charging and discharging process, which can avoid the erosion of electrolyte to transition-metal elements, restrain the damage of NCA structure, and then improves the cycle performance of NCA/Li cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)CrossRef B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)CrossRef
2.
Zurück zum Zitat D. Ke, H. Xie, G. Hu, Z. Peng, Y. Cao, Y. Fan, Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying-coating nano-Al2O3. ACS Appl. Mater. Interfaces 8, 17713 (2016)CrossRef D. Ke, H. Xie, G. Hu, Z. Peng, Y. Cao, Y. Fan, Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying-coating nano-Al2O3. ACS Appl. Mater. Interfaces 8, 17713 (2016)CrossRef
3.
Zurück zum Zitat S.S. Zhang, T.R. Jow, K. Amine, G.L. Henriksen, LiPF6–EC–EMC electrolyte for Li-ion battery. J. Power Sources 107, 18–23 (2002)CrossRef S.S. Zhang, T.R. Jow, K. Amine, G.L. Henriksen, LiPF6–EC–EMC electrolyte for Li-ion battery. J. Power Sources 107, 18–23 (2002)CrossRef
4.
Zurück zum Zitat J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 112, 222–230 (2002)CrossRef J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 112, 222–230 (2002)CrossRef
5.
Zurück zum Zitat D.P. Abraham, M.M. Furczon, S.H. Kang, D.W. Dees, A.N. Jansen, Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. J. Power Sources 180, 612–620 (2008)CrossRef D.P. Abraham, M.M. Furczon, S.H. Kang, D.W. Dees, A.N. Jansen, Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. J. Power Sources 180, 612–620 (2008)CrossRef
6.
Zurück zum Zitat S.S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2 -based electrolyte. J. Power Sources 163, 713–718 (2007)CrossRef S.S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2 -based electrolyte. J. Power Sources 163, 713–718 (2007)CrossRef
7.
Zurück zum Zitat T. Schedlbauer, S. Krüger, R. Schmitz, R.W. Schmitz, C. Schreiner, H.J. Gores, S. Passerini, M. Winter, Lithium difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim. Acta 92, 102–107 (2013)CrossRef T. Schedlbauer, S. Krüger, R. Schmitz, R.W. Schmitz, C. Schreiner, H.J. Gores, S. Passerini, M. Winter, Lithium difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim. Acta 92, 102–107 (2013)CrossRef
8.
Zurück zum Zitat J.L. Allen, S.D. Han, P.D. Boyle, W.A. Henderson, Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox). J. Power Sources 196, 9737–9742 (2011)CrossRef J.L. Allen, S.D. Han, P.D. Boyle, W.A. Henderson, Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox). J. Power Sources 196, 9737–9742 (2011)CrossRef
9.
Zurück zum Zitat S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8, 1423–1428 (2006)CrossRef S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8, 1423–1428 (2006)CrossRef
10.
Zurück zum Zitat H. Zhou, F. Jian, Preparation, thermal stability and electrochemical properties of LiODFB. J. Mater. Sci. Technol. 28, 723–727 (2012)CrossRef H. Zhou, F. Jian, Preparation, thermal stability and electrochemical properties of LiODFB. J. Mater. Sci. Technol. 28, 723–727 (2012)CrossRef
11.
Zurück zum Zitat M.C. Smart, B.V. Ratnakumar, V.S. Ryan-Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, I. Cheung, Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes., J. Power Sources 119–121, 359–367 (2003)CrossRef M.C. Smart, B.V. Ratnakumar, V.S. Ryan-Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, I. Cheung, Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes., J. Power Sources 119–121, 359–367 (2003)CrossRef
12.
Zurück zum Zitat H.Q. Pham, K.M. Nam, E.H. Hwang, Y.G. Kwon, H.M. Jung, S.W. Song, Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive. J. Electrochem. Soc. 161, 2002–2011 (2014)CrossRef H.Q. Pham, K.M. Nam, E.H. Hwang, Y.G. Kwon, H.M. Jung, S.W. Song, Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive. J. Electrochem. Soc. 161, 2002–2011 (2014)CrossRef
13.
Zurück zum Zitat Y. Abu-Lebdeh, I. Davidson, High-voltage electrolytes based on adiponitrile for Li-ion batteries. J. Electrochem. Soc. 156, A60-5 (2009)CrossRef Y. Abu-Lebdeh, I. Davidson, High-voltage electrolytes based on adiponitrile for Li-ion batteries. J. Electrochem. Soc. 156, A60-5 (2009)CrossRef
14.
Zurück zum Zitat J. Xiang, F. Wu, R. Chen, L. Li, H. Yu, High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J. Power Sources 233, 115–120 (2013)CrossRef J. Xiang, F. Wu, R. Chen, L. Li, H. Yu, High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J. Power Sources 233, 115–120 (2013)CrossRef
15.
Zurück zum Zitat A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources 174, 342–348 (2007)CrossRef A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources 174, 342–348 (2007)CrossRef
16.
Zurück zum Zitat Y. Watanabe, S.I. Kinoshita, S. Wada, K. Hoshino, H. Morimoto, S.I. Tobishima, Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells. J. Power Sources 179, 770–779 (2008)CrossRef Y. Watanabe, S.I. Kinoshita, S. Wada, K. Hoshino, H. Morimoto, S.I. Tobishima, Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells. J. Power Sources 179, 770–779 (2008)CrossRef
17.
Zurück zum Zitat A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 11, 1073–1076 (2009)CrossRef A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 11, 1073–1076 (2009)CrossRef
18.
Zurück zum Zitat D.M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.D. Han, S. Passerini, W.A. Henderson, Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures–transport properties. J. Electrochem. Soc. 160 A1061–A1070 (2013)CrossRef D.M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.D. Han, S. Passerini, W.A. Henderson, Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures–transport properties. J. Electrochem. Soc. 160 A1061–A1070 (2013)CrossRef
19.
Zurück zum Zitat S.D. Han, J.L. Allen, E. Jónsson, P. Johansson, D.W. Mcowen, P.D. Boyle, W.A. Henderson, Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes. J. Phys. Chem. C 117, 5521–5531 (2013)CrossRef S.D. Han, J.L. Allen, E. Jónsson, P. Johansson, D.W. Mcowen, P.D. Boyle, W.A. Henderson, Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes. J. Phys. Chem. C 117, 5521–5531 (2013)CrossRef
20.
Zurück zum Zitat C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J. Electrochem. Soc. 157, A721–A728 (2010)CrossRef C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J. Electrochem. Soc. 157, A721–A728 (2010)CrossRef
21.
Zurück zum Zitat S. Li, W. Zhao, X. Cui, Y. Zhao, B. Li, H. Zhang, Y. Li, G. Li, X. Ye, Y. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries. Electrochim. Acta 91, 282–292 (2013)CrossRef S. Li, W. Zhao, X. Cui, Y. Zhao, B. Li, H. Zhang, Y. Li, G. Li, X. Ye, Y. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries. Electrochim. Acta 91, 282–292 (2013)CrossRef
22.
Zurück zum Zitat S.Y. Bae, W.K. Shin, D.W. Kim, Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials. Electrochim. Acta 125, 497–502 (2014)CrossRef S.Y. Bae, W.K. Shin, D.W. Kim, Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials. Electrochim. Acta 125, 497–502 (2014)CrossRef
23.
Zurück zum Zitat H. Rong, M. Xu, L. Xing, W. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP). J. Power Sources 261, 148–155 (2014)CrossRef H. Rong, M. Xu, L. Xing, W. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP). J. Power Sources 261, 148–155 (2014)CrossRef
24.
Zurück zum Zitat J. Ou, L. Yang, X. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci.: Mater. Electron. 27, 9008–9014 (2016) J. Ou, L. Yang, X. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci.: Mater. Electron. 27, 9008–9014 (2016)
25.
Zurück zum Zitat H. Zhou, K. Xiao, J. Li, Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi 0.5Mn1.5O4 cathode material. J. Power Sources 302, 274–282 (2016)CrossRef H. Zhou, K. Xiao, J. Li, Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi 0.5Mn1.5O4 cathode material. J. Power Sources 302, 274–282 (2016)CrossRef
26.
Zurück zum Zitat G. Yan, X. Li, Z. Wang, H. Guo, C. Wang, Tris(trimethylsilyl)phosphate: a film-forming additive for high voltage cathode material in lithium-ion batteries. J. Power Sources 248, 1306–1311 (2014)CrossRef G. Yan, X. Li, Z. Wang, H. Guo, C. Wang, Tris(trimethylsilyl)phosphate: a film-forming additive for high voltage cathode material in lithium-ion batteries. J. Power Sources 248, 1306–1311 (2014)CrossRef
27.
Zurück zum Zitat M.L. Lazar, B.L. Lucht, Carbonate free electrolyte for lithium ion batteries containing γ-butyrolactone and methyl butyrate. J. Electrochem. Soc. 162, A928–A934 (2015)CrossRef M.L. Lazar, B.L. Lucht, Carbonate free electrolyte for lithium ion batteries containing γ-butyrolactone and methyl butyrate. J. Electrochem. Soc. 162, A928–A934 (2015)CrossRef
28.
Zurück zum Zitat S. Li, X. Xu, X. Shi, B. Li, Y. Zhao, H. Zhang, Y. Li, W. Zhao, X. Gui, L. Mao, Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane. J. Power Sources 217, 503–508 (2012)CrossRef S. Li, X. Xu, X. Shi, B. Li, Y. Zhao, H. Zhang, Y. Li, W. Zhao, X. Gui, L. Mao, Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane. J. Power Sources 217, 503–508 (2012)CrossRef
29.
Zurück zum Zitat J. Zhang, X. Yu, C. Wang, Z. Cao, H. Yang, D. Ma, X. Xu, Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J. Mater. Sci.: Mater. Electron. 27, 4457–4464 (2016) J. Zhang, X. Yu, C. Wang, Z. Cao, H. Yang, D. Ma, X. Xu, Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J. Mater. Sci.: Mater. Electron. 27, 4457–4464 (2016)
30.
Zurück zum Zitat S. Li, W. Zhao, Z. Zhou, X. Cui, Z. Shang, H. Liu, D. Zhang, Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 4920–4926 (2014)CrossRef S. Li, W. Zhao, Z. Zhou, X. Cui, Z. Shang, H. Liu, D. Zhang, Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 4920–4926 (2014)CrossRef
Metadaten
Titel
An electrolyte to improve the deep charge–discharge performance of LiNi0.8Co0.15Al0.05O2 cathode
verfasst von
Hongming Zhou
Zhaohui Yang
Demin Xiao
Kaiwen Xiao
Jian Li
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8650-y

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Science: Materials in Electronics 8/2018 Zur Ausgabe

Neuer Inhalt