Skip to main content
Erschienen in: Soft Computing 24/2019

22.02.2019 | Methodologies and Application

An evolutionary deep belief network extreme learning-based for breast cancer diagnosis

verfasst von: Somayeh Ronoud, Shahrokh Asadi

Erschienen in: Soft Computing | Ausgabe 24/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cancer is one of the leading causes of morbidity and mortality worldwide with increasing prevalence. Breast cancer is the most common type among women, and its early diagnosis is crucially important. Cancer diagnosis is a classification problem, where its nature requires very high classification accuracy. As artificial neural networks (ANNs) have a high capability in modeling nonlinear relationships in data, they are frequently used as good global approximators in prediction and classification problems. However, in complex problems such as diagnosing breast cancer, shallow ANNs may cause certain problems due to their limited capacity of modeling and representation. Therefore, deep architectures are essential for extracting the complicated structure of cancer data. Under such circumstances, deep belief networks (DBNs) are appropriate choice whose application involves two major challenges: (1) the method of fine-tuning the network weights and biases and (2) the number of hidden layers and neurons. The present study suggests two novel evolutionary methods, namely E(T)-DBN-BP-ELM and E(T)-DBN-ELM-BP, that address the first challenge via combining DBN with extreme learning machine (ELM) classifier. In the proposed methods, because of the very large solution space of DBN topologies, the genetic algorithm (GA), which is able to search globally in the solutions space wondrously, has been applied for architecture optimization to tackle the second challenge. The third proposed method in this paper, E(TW)-DBN, uses GA to solve both challenges, in which DBN topology and weights evolve simultaneously. The proposed models are tested using two breast cancer datasets and compared with the state-of-the-art methods in the literature in terms of classification performance metrics and area under ROC (AUC) curves. According to the results, the proposed methods exhibit very high diagnostic performance in classification of breast cancer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
2
Contrastive Divergence with k step of Gibbs Sampling.
 
Literatur
Zurück zum Zitat Abdel-Zaher AM, Eldeib AM (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144CrossRef Abdel-Zaher AM, Eldeib AM (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144CrossRef
Zurück zum Zitat Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn Lett 24:2195–2207MATHCrossRef Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn Lett 24:2195–2207MATHCrossRef
Zurück zum Zitat Ahmadizar F, Soltanian K, AkhlaghianTab F, Tsoulos I (2015) Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm. Eng Appl Artif Intell 39:1–13CrossRef Ahmadizar F, Soltanian K, AkhlaghianTab F, Tsoulos I (2015) Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm. Eng Appl Artif Intell 39:1–13CrossRef
Zurück zum Zitat Albrecht AA, Lappas G, Vinterbo SA, Wong C, Ohno-Machado L (2002) Two applications of the LSA machine, neural information processing, 2002. In: Proceedings of the 9th international conference on ICONIP’02. Publishing, pp 184–189 Albrecht AA, Lappas G, Vinterbo SA, Wong C, Ohno-Machado L (2002) Two applications of the LSA machine, neural information processing, 2002. In: Proceedings of the 9th international conference on ICONIP’02. Publishing, pp 184–189
Zurück zum Zitat Asadi S (2019) Evolutionary fuzzification of RIPPER for regression: case study of stock prediction. Neurocomputing 331:121–137CrossRef Asadi S (2019) Evolutionary fuzzification of RIPPER for regression: case study of stock prediction. Neurocomputing 331:121–137CrossRef
Zurück zum Zitat Asadi S, Shahrabi J (2016) ACORI: a novel ACO algorithm for Rule Induction. Knowl Based Syst 97:175–187CrossRef Asadi S, Shahrabi J (2016) ACORI: a novel ACO algorithm for Rule Induction. Knowl Based Syst 97:175–187CrossRef
Zurück zum Zitat Asadi S, Shahrabi J (2017) Complexity-based parallel rule induction for multiclass classification. Inf Sci 380:53–73CrossRef Asadi S, Shahrabi J (2017) Complexity-based parallel rule induction for multiclass classification. Inf Sci 380:53–73CrossRef
Zurück zum Zitat Asadi S, Hadavandi E, Mehmanpazir F, Nakhostin MM (2012) Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl Based Syst 35:245–258CrossRef Asadi S, Hadavandi E, Mehmanpazir F, Nakhostin MM (2012) Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl Based Syst 35:245–258CrossRef
Zurück zum Zitat Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480CrossRef Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480CrossRef
Zurück zum Zitat Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® Mach Learn 2:1–127 Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® Mach Learn 2:1–127
Zurück zum Zitat Bhardwaj A, Tiwari A (2015) Breast cancer diagnosis using genetically optimized neural network model. Expert Syst Appl 42:4611–4620CrossRef Bhardwaj A, Tiwari A (2015) Breast cancer diagnosis using genetically optimized neural network model. Expert Syst Appl 42:4611–4620CrossRef
Zurück zum Zitat Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159CrossRef Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159CrossRef
Zurück zum Zitat Cao L-L, Huang W-B, Sun F-C (2016) Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing 174:60–71CrossRef Cao L-L, Huang W-B, Sun F-C (2016) Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing 174:60–71CrossRef
Zurück zum Zitat Chen H-L, Yang B, Liu J, Liu D-Y (2011) A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 38:9014–9022CrossRef Chen H-L, Yang B, Liu J, Liu D-Y (2011) A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 38:9014–9022CrossRef
Zurück zum Zitat Çınar M, Engin M, Engin EZ, Ateşçi YZ (2009) Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Syst Appl 36:6357–6361CrossRef Çınar M, Engin M, Engin EZ, Ateşçi YZ (2009) Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Syst Appl 36:6357–6361CrossRef
Zurück zum Zitat Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, de Jong PA, Prokop M, van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26:195–202CrossRef Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, de Jong PA, Prokop M, van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26:195–202CrossRef
Zurück zum Zitat Flores-Fernández JM, Herrera-López EJ, Sánchez-Llamas F, Rojas-Calvillo A, Cabrera-Galeana PA, Leal-Pacheco G, González-Palomar MG, Femat R, Martínez-Velázquez M (2012) Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling. Expert Syst Appl 39:10851–10856CrossRef Flores-Fernández JM, Herrera-López EJ, Sánchez-Llamas F, Rojas-Calvillo A, Cabrera-Galeana PA, Leal-Pacheco G, González-Palomar MG, Femat R, Martínez-Velázquez M (2012) Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling. Expert Syst Appl 39:10851–10856CrossRef
Zurück zum Zitat Fotouhi S, Asadi S, Kattan MW (2019) A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Informs 90:1–30 Fotouhi S, Asadi S, Kattan MW (2019) A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Informs 90:1–30
Zurück zum Zitat Frénay B, Verleysen M (2011) Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 74:2526–2531CrossRef Frénay B, Verleysen M (2011) Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 74:2526–2531CrossRef
Zurück zum Zitat Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560CrossRef Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560CrossRef
Zurück zum Zitat Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2015) Deep learning for visual understanding: A review. Neurocomputing 187:27–48CrossRef Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2015) Deep learning for visual understanding: A review. Neurocomputing 187:27–48CrossRef
Zurück zum Zitat Hinton G (2010) A practical guide to training restricted Boltzmann machines. Momentum 9:926 Hinton G (2010) A practical guide to training restricted Boltzmann machines. Momentum 9:926
Zurück zum Zitat Hrasko R, Pacheco AG, Krohling RA (2015) Time series prediction using restricted Boltzmann machines and backpropagation. Proc Comput Sci 55:990–999CrossRef Hrasko R, Pacheco AG, Krohling RA (2015) Time series prediction using restricted Boltzmann machines and backpropagation. Proc Comput Sci 55:990–999CrossRef
Zurück zum Zitat Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17:299–310CrossRef Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17:299–310CrossRef
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
Zurück zum Zitat Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155–163CrossRef Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155–163CrossRef
Zurück zum Zitat Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cyber Part B Cybern 42:513–529CrossRef Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cyber Part B Cybern 42:513–529CrossRef
Zurück zum Zitat Karabatak M (2015) A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 72:32–36CrossRef Karabatak M (2015) A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 72:32–36CrossRef
Zurück zum Zitat Kazemi S, Hadavandi E, Shamshirband S, Asadi S (2016) A novel evolutionary-negative correlated mixture of experts model in tourism demand estimation. Comput Hum Behav 64:641–655CrossRef Kazemi S, Hadavandi E, Shamshirband S, Asadi S (2016) A novel evolutionary-negative correlated mixture of experts model in tourism demand estimation. Comput Hum Behav 64:641–655CrossRef
Zurück zum Zitat Keyvanrad MA, Homayounpour MM (2015) Deep belief network training improvement using elite samples minimizing free energy. Int J Pattern Recognit Artif Intell 29:1551006CrossRef Keyvanrad MA, Homayounpour MM (2015) Deep belief network training improvement using elite samples minimizing free energy. Int J Pattern Recognit Artif Intell 29:1551006CrossRef
Zurück zum Zitat Kong H, Lai Z, Wang X, Liu F (2015) Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing Kong H, Lai Z, Wang X, Liu F (2015) Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing
Zurück zum Zitat Koyuncu H, Ceylan R (2013) Artificial neural network based on rotation forest for biomedical pattern classification. In: 2013 36th international conference on telecommunications and signal processing (TSP). Publishing, pp 581–585 Koyuncu H, Ceylan R (2013) Artificial neural network based on rotation forest for biomedical pattern classification. In: 2013 36th international conference on telecommunications and signal processing (TSP). Publishing, pp 581–585
Zurück zum Zitat Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24CrossRef Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24CrossRef
Zurück zum Zitat Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on machine learning. Publishing, pp 473–480 Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on machine learning. Publishing, pp 473–480
Zurück zum Zitat Lavanya D, Rani DKU (2011) Analysis of feature selection with classification: breast cancer datasets. IJCSE 2:756–763 Lavanya D, Rani DKU (2011) Analysis of feature selection with classification: breast cancer datasets. IJCSE 2:756–763
Zurück zum Zitat Le Roux N, Bengio Y (2008) Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput 20:1631–1649MathSciNetMATHCrossRef Le Roux N, Bengio Y (2008) Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput 20:1631–1649MathSciNetMATHCrossRef
Zurück zum Zitat Liu Q, He Q, Shi Z (2008) Extreme support vector machine classifier, Pacific-Asia conference on knowledge discovery and data mining. Publishing, pp 222–233 Liu Q, He Q, Shi Z (2008) Extreme support vector machine classifier, Pacific-Asia conference on knowledge discovery and data mining. Publishing, pp 222–233
Zurück zum Zitat Malmir H, Farokhi F, Sabbaghi-Nadooshan R (2013) Optimization of data mining with evolutionary algorithms for cloud computing application. In: 2013 3rd international econference on computer and knowledge engineering (ICCKE). Publishing, pp 343–347 Malmir H, Farokhi F, Sabbaghi-Nadooshan R (2013) Optimization of data mining with evolutionary algorithms for cloud computing application. In: 2013 3rd international econference on computer and knowledge engineering (ICCKE). Publishing, pp 343–347
Zurück zum Zitat Mansourypoor F, Asadi S (2017) Development of a reinforcement learning-based evolutionary fuzzy rule-based system for diabetes diagnosis. Comput Biol Med 91:337–352CrossRef Mansourypoor F, Asadi S (2017) Development of a reinforcement learning-based evolutionary fuzzy rule-based system for diabetes diagnosis. Comput Biol Med 91:337–352CrossRef
Zurück zum Zitat Marcano-Cedeño A, Quintanilla-Domínguez J, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38:9573–9579CrossRef Marcano-Cedeño A, Quintanilla-Domínguez J, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38:9573–9579CrossRef
Zurück zum Zitat Mehmanpazir F, Asadi S (2017) Development of an evolutionary fuzzy expert system for estimating future behavior of stock price. J Ind Eng Int 13:29–46CrossRef Mehmanpazir F, Asadi S (2017) Development of an evolutionary fuzzy expert system for estimating future behavior of stock price. J Ind Eng Int 13:29–46CrossRef
Zurück zum Zitat Milovic B (2012) Prediction and decision making in health care using data mining. IJPHS 1:69–78CrossRef Milovic B (2012) Prediction and decision making in health care using data mining. IJPHS 1:69–78CrossRef
Zurück zum Zitat Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16:149–169CrossRef Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16:149–169CrossRef
Zurück zum Zitat Örkcü HH, Bal H (2011) Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Syst Appl 38:3703–3709CrossRef Örkcü HH, Bal H (2011) Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Syst Appl 38:3703–3709CrossRef
Zurück zum Zitat Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Technical University of Denmark, Palm, p 25 Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Technical University of Denmark, Palm, p 25
Zurück zum Zitat Park K, Ali A, Kim D, An Y, Kim M, Shin H (2013) Robust predictive model for evaluating breast cancer survivability. Eng Appl Artif Intell 26:2194–2205CrossRef Park K, Ali A, Kim D, An Y, Kim M, Shin H (2013) Robust predictive model for evaluating breast cancer survivability. Eng Appl Artif Intell 26:2194–2205CrossRef
Zurück zum Zitat Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17:131–155CrossRef Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17:131–155CrossRef
Zurück zum Zitat Pham D, Sagiroglu S (2000) Neural network classification of defects in veneer boards. Proc Inst Mech Eng Part B J Eng Manuf 214:255–258CrossRef Pham D, Sagiroglu S (2000) Neural network classification of defects in veneer boards. Proc Inst Mech Eng Part B J Eng Manuf 214:255–258CrossRef
Zurück zum Zitat Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Proc 17:694–701CrossRef Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Proc 17:694–701CrossRef
Zurück zum Zitat Qu B, Lang B, Liang J, Qin A, Crisalle O (2016) Two-hidden-layer extreme learning machine for regression and classification. Neurocomputing 175:826–834CrossRef Qu B, Lang B, Liang J, Qin A, Crisalle O (2016) Two-hidden-layer extreme learning machine for regression and classification. Neurocomputing 175:826–834CrossRef
Zurück zum Zitat Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Intell Res 4:77–90MATHCrossRef Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Intell Res 4:77–90MATHCrossRef
Zurück zum Zitat Razavi SH, Ebadati EOM, Asadi S, Kaur H (2015) An efficient grouping genetic algorithm for data clustering and big data analysis. Computational intelligence for big data analysis. Publishing, pp 119–142 Razavi SH, Ebadati EOM, Asadi S, Kaur H (2015) An efficient grouping genetic algorithm for data clustering and big data analysis. Computational intelligence for big data analysis. Publishing, pp 119–142
Zurück zum Zitat Saritas I, Ozkan IA, Sert IU (2010) Prognosis of prostate cancer by artificial neural networks. Expert Syst Appl 37:6646–6650CrossRef Saritas I, Ozkan IA, Sert IU (2010) Prognosis of prostate cancer by artificial neural networks. Expert Syst Appl 37:6646–6650CrossRef
Zurück zum Zitat Shahrabi J, Hadavandi E, Asadi S (2013) Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series. Knowl Based Syst 43:112–122CrossRef Shahrabi J, Hadavandi E, Asadi S (2013) Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series. Knowl Based Syst 43:112–122CrossRef
Zurück zum Zitat Shen F, Chao J, Zhao J (2015) Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167:243–253CrossRef Shen F, Chao J, Zhao J (2015) Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167:243–253CrossRef
Zurück zum Zitat Smolensky P (1986) Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: Volume 1: Foundations. MIT Press, Cambridge 1987:194–281 Smolensky P (1986) Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: Volume 1: Foundations. MIT Press, Cambridge 1987:194–281
Zurück zum Zitat Sumbaly R, Vishnusri N, Jeyalatha S (2014) Diagnosis of breast cancer using decision tree data mining technique. Int J Comput Appl 98:16–24 Sumbaly R, Vishnusri N, Jeyalatha S (2014) Diagnosis of breast cancer using decision tree data mining technique. Int J Comput Appl 98:16–24
Zurück zum Zitat Tahan MH, Asadi S (2018a) EMDID: evolutionary multi-objective discretization for imbalanced datasets. Inf Sci 432:442–461MathSciNetCrossRef Tahan MH, Asadi S (2018a) EMDID: evolutionary multi-objective discretization for imbalanced datasets. Inf Sci 432:442–461MathSciNetCrossRef
Zurück zum Zitat Tahan MH, Asadi S (2018b) MEMOD: a novel multivariate evolutionary multi-objective discretization. Soft Comput 22:301–323CrossRef Tahan MH, Asadi S (2018b) MEMOD: a novel multivariate evolutionary multi-objective discretization. Soft Comput 22:301–323CrossRef
Zurück zum Zitat Tieleman T (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th international conference on machine learning. Publishing, pp 1064–1071 Tieleman T (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th international conference on machine learning. Publishing, pp 1064–1071
Zurück zum Zitat Tieleman T, Hinton G (2009) Using fast weights to improve persistent contrastive divergence. In: Proceedings of the 26th annual international conference on machine learning. Publishing, pp 1033–1040 Tieleman T, Hinton G (2009) Using fast weights to improve persistent contrastive divergence. In: Proceedings of the 26th annual international conference on machine learning. Publishing, pp 1033–1040
Zurück zum Zitat Übeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33:1054–1062CrossRef Übeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33:1054–1062CrossRef
Zurück zum Zitat Wang Y, Xie Z, Xu K, Dou Y, Lei Y (2016) An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 174:988–998CrossRef Wang Y, Xie Z, Xu K, Dou Y, Lei Y (2016) An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 174:988–998CrossRef
Zurück zum Zitat Wu Y, Wu Y, Wang J, Yan Z, Qu L, Xiang B, Zhang Y (2011) An optimal tumor marker group-coupled artificial neural network for diagnosis of lung cancer. Expert Syst Appl 38:11329–11334CrossRef Wu Y, Wu Y, Wang J, Yan Z, Qu L, Xiang B, Zhang Y (2011) An optimal tumor marker group-coupled artificial neural network for diagnosis of lung cancer. Expert Syst Appl 38:11329–11334CrossRef
Zurück zum Zitat Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276CrossRef Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276CrossRef
Zurück zum Zitat Yu W, Zhuang F, He Q, Shi Z (2015) Learning deep representations via extreme learning machines. Neurocomputing 149:308–315CrossRef Yu W, Zhuang F, He Q, Shi Z (2015) Learning deep representations via extreme learning machines. Neurocomputing 149:308–315CrossRef
Zurück zum Zitat Zheng B, Yoon SW, Lam SS (2014) Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst Appl 41:1476–1482CrossRef Zheng B, Yoon SW, Lam SS (2014) Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst Appl 41:1476–1482CrossRef
Metadaten
Titel
An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
verfasst von
Somayeh Ronoud
Shahrokh Asadi
Publikationsdatum
22.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 24/2019
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-019-03856-0

Weitere Artikel der Ausgabe 24/2019

Soft Computing 24/2019 Zur Ausgabe

Premium Partner