Skip to main content

2024 | OriginalPaper | Buchkapitel

An Experimental Investigation of an Effect of Swirl Flow Field and the Aerodynamic Force on the Droplet Breakup Morphology

verfasst von : Pavan Kumar Kirar, Surendra Kumar Soni, Pankaj S. Kolhe, Kirti Chandra Sahu

Erschienen in: Fluid Mechanics and Fluid Power, Volume 5

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The interaction of an ethanol drop with a swirl flow is studied experimentally by shadowgraphy technique. In a swirling airflow, the drop has opposed, cross, and co-flow situations based on its detaching position, swirl strength, and aerodynamic force resulting in a different droplet morphology. As the droplet interacts with a differential flow field produced by the wake of the vane in swirling airflow, we observe a new breakup dynamics known as “retracting bag breakup.” For different dimensionless variables affecting the droplet morphology and its trajectories, a regime map is presented, outlining the multiple modes, such as no droplet breakup, vibrational only, retracting bag, and bag breakup modes. The breakup time for different locations and Weber number is demonstrated. The breakup time is significantly less when the drop experiences two flow configurations simultaneously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lefebvre AH, McDonell VG (2017) Atomization and sprays. CRC press Lefebvre AH, McDonell VG (2017) Atomization and sprays. CRC press
3.
Zurück zum Zitat Castleman RA (1931) The mechanism of the atomization of liquids. J Res Natl Bur Stand (U. S.) 6:369–376 Castleman RA (1931) The mechanism of the atomization of liquids. J Res Natl Bur Stand (U. S.) 6:369–376
4.
Zurück zum Zitat Guildenbecher DR, Opez-Rivera CL, Sojka PE (2009) Secondary atomization. Exp Fluids 46(3):371–402 Guildenbecher DR, Opez-Rivera CL, Sojka PE (2009) Secondary atomization. Exp Fluids 46(3):371–402
5.
Zurück zum Zitat Reitz RD, Diwakar R (1987) Structure of high-pressure fuel sprays. SAE Transactions, 492–509 Reitz RD, Diwakar R (1987) Structure of high-pressure fuel sprays. SAE Transactions, 492–509
6.
Zurück zum Zitat Villermaux E, Bossa B (2009) Single-drop fragmentation determines size distribution of raindrops. Nat Phys 5(9):697–702CrossRef Villermaux E, Bossa B (2009) Single-drop fragmentation determines size distribution of raindrops. Nat Phys 5(9):697–702CrossRef
8.
Zurück zum Zitat Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc Math Phys Eng Sci 201(1065):192–196 Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc Math Phys Eng Sci 201(1065):192–196
9.
Zurück zum Zitat Dai Z, Faeth GM (2001) Temporal properties of secondary drop breakup in the multimode breakup regime. Int J Multiphase Flow 27(2):217–236CrossRef Dai Z, Faeth GM (2001) Temporal properties of secondary drop breakup in the multimode breakup regime. Int J Multiphase Flow 27(2):217–236CrossRef
10.
Zurück zum Zitat Jain SS, Tyagi N, Prakash RS, Ravikrishna RV, Tomar G (2019) Secondary breakup of drops at moderate weber numbers: effect of density ratio and Reynolds number. Int J Multiphase Flow 117:25–41MathSciNetCrossRef Jain SS, Tyagi N, Prakash RS, Ravikrishna RV, Tomar G (2019) Secondary breakup of drops at moderate weber numbers: effect of density ratio and Reynolds number. Int J Multiphase Flow 117:25–41MathSciNetCrossRef
11.
Zurück zum Zitat K ́ekesi T, Amberg G, Wittberg LP (2014) Drop deformation and breakup. Int J Multiphase Flow 66:1–10 K ́ekesi T, Amberg G, Wittberg LP (2014) Drop deformation and breakup. Int J Multiphase Flow 66:1–10
12.
Zurück zum Zitat Kulkarni V, Sojka PE (2014) Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys Fluids 26(7):072103 Kulkarni V, Sojka PE (2014) Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys Fluids 26(7):072103
13.
Zurück zum Zitat Xiao F, Wang ZG, Sun MB, Liu N, Yang X (2017) Simulation of drop deformation and breakup in supersonic flow. Proc Combust Inst 36(2):2417–2424CrossRef Xiao F, Wang ZG, Sun MB, Liu N, Yang X (2017) Simulation of drop deformation and breakup in supersonic flow. Proc Combust Inst 36(2):2417–2424CrossRef
14.
Zurück zum Zitat Yang W, Jia M, Che Z, Sun K, Wang T (2017) Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow. Int J Heat Mass Transf 111:884–894CrossRef Yang W, Jia M, Che Z, Sun K, Wang T (2017) Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow. Int J Heat Mass Transf 111:884–894CrossRef
15.
Zurück zum Zitat Zhao H, Liu HF, Li WF, Xu JL (2010) Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys Fluids 22(11):114103 Zhao H, Liu HF, Li WF, Xu JL (2010) Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys Fluids 22(11):114103
16.
Zurück zum Zitat Fakhari A, Rahimian MH (2011) Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice boltzmann method. Comput Fluids 40(1):156–171CrossRef Fakhari A, Rahimian MH (2011) Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice boltzmann method. Comput Fluids 40(1):156–171CrossRef
17.
Zurück zum Zitat Kirar PK, Soni SK, Kolhe PS, Sahu PC (2022) An experimental investigation of droplet morphology in swirl flow. J Fluid Mech 938 Kirar PK, Soni SK, Kolhe PS, Sahu PC (2022) An experimental investigation of droplet morphology in swirl flow. J Fluid Mech 938
18.
Zurück zum Zitat Komabayasi M, Gonda T, Isono K (1964) Life time of water drops before breaking and size distribution of fragment droplets. J Meteorol Soc Japan 42(5):330–340CrossRef Komabayasi M, Gonda T, Isono K (1964) Life time of water drops before breaking and size distribution of fragment droplets. J Meteorol Soc Japan 42(5):330–340CrossRef
19.
Zurück zum Zitat Hsiang LP, Faeth GM (1993) Drop properties after secondary breakup. Int J Multiphase Flow 19(5):721–735CrossRef Hsiang LP, Faeth GM (1993) Drop properties after secondary breakup. Int J Multiphase Flow 19(5):721–735CrossRef
20.
Zurück zum Zitat Villermaux E, Eloi F (2011) The distribution of raindrops speeds. Geophys Res Lett 38(19) Villermaux E, Eloi F (2011) The distribution of raindrops speeds. Geophys Res Lett 38(19)
21.
Zurück zum Zitat Soni SK, Kirar PK, Kolhe P, Sahu KC (2020) Deformation and breakup of droplets in an oblique continuous air stream. Int J Multiphase Flow 122:103141CrossRef Soni SK, Kirar PK, Kolhe P, Sahu KC (2020) Deformation and breakup of droplets in an oblique continuous air stream. Int J Multiphase Flow 122:103141CrossRef
22.
Zurück zum Zitat Kumar A, Sahu S (2019) Large scale instabilities in coaxial air-water jets with annular air swirl. Phys Fluids 31(12):124103 Kumar A, Sahu S (2019) Large scale instabilities in coaxial air-water jets with annular air swirl. Phys Fluids 31(12):124103
23.
Zurück zum Zitat Merkle K, Haessler H, B ̈uchner H, Zarzalis N (2003) Effect of co-and counter-swirl on the isothermal flow-and mixture-field of an airblast atomizer nozzle. Int J Heat Fluid Flow 24(4):529–537 Merkle K, Haessler H, B ̈uchner H, Zarzalis N (2003) Effect of co-and counter-swirl on the isothermal flow-and mixture-field of an airblast atomizer nozzle. Int J Heat Fluid Flow 24(4):529–537
24.
Zurück zum Zitat Patil S, Sahu S (2021) Air swirl effect on spray characteristics and droplet dispersion in a twin-jet crossflow airblast injector. Phys Fluids 33(7):073314 Patil S, Sahu S (2021) Air swirl effect on spray characteristics and droplet dispersion in a twin-jet crossflow airblast injector. Phys Fluids 33(7):073314
25.
Zurück zum Zitat Soni SK, Kolhe PS (2021) Liquid jet breakup and spray formation with annular swirl air. Int J Multiphase Flow 134:103474MathSciNetCrossRef Soni SK, Kolhe PS (2021) Liquid jet breakup and spray formation with annular swirl air. Int J Multiphase Flow 134:103474MathSciNetCrossRef
26.
Zurück zum Zitat Kim M, Park J, Lim J (2006) Numerical simulation on the raindrop transportation in the turbulent flow field of the heavy-duty intake system. Tech Rep SAE Tech Pap Kim M, Park J, Lim J (2006) Numerical simulation on the raindrop transportation in the turbulent flow field of the heavy-duty intake system. Tech Rep SAE Tech Pap
Metadaten
Titel
An Experimental Investigation of an Effect of Swirl Flow Field and the Aerodynamic Force on the Droplet Breakup Morphology
verfasst von
Pavan Kumar Kirar
Surendra Kumar Soni
Pankaj S. Kolhe
Kirti Chandra Sahu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6074-3_33

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.