Skip to main content
Erschienen in: Neural Processing Letters 2/2020

11.01.2020

An Image Clustering Auto-Encoder Based on Predefined Evenly-Distributed Class Centroids and MMD Distance

verfasst von: Qiuyu Zhu, Zhengyong Wang

Erschienen in: Neural Processing Letters | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a novel, effective and simpler end-to-end image clustering auto-encoder algorithm: ICAE. The algorithm uses predefined evenly-distributed class centroids (PEDCC) as the clustering centers, which ensures the inter-class distance of latent features is maximal, and adds data distribution constraint, data augmentation constraint, auto-encoder reconstruction constraint and Sobel smooth constraint to improve the clustering performance. Specifically, we perform one-to-one data augmentation to learn the more effective features. The data and the augmented data are simultaneously input into the autoencoder to obtain latent features and the augmented latent features whose similarity are constrained by an augmentation loss. Then, making use of the maximum mean discrepancy distance, we combine the latent features and augmented latent features to make their distribution close to the PEDCC distribution (uniform distribution between classes, Dirac distribution within the class) to further learn clustering-oriented features. At the same time, the MSE of the original input image and reconstructed image is used as reconstruction constraint, and the Sobel smooth loss to build generalization constraint to improve the generalization ability. Finally, extensive experiments on three common datasets MNIST, Fashion-MNIST, COIL20 are conducted. The experimental results show that the algorithm has achieved the best clustering results so far. In addition, we can use the predefined PEDCC class centers, and the decoder to clearly generate the samples of each class. The code can be downloaded at https://​github.​com/​zyWang-Power/​Clustering!

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cai D, He X, Wang X, Bao H, Han J (2009) Locality preserving nonnegative matrix factorization. In: Twenty-first international joint conference on artificial intelligence Cai D, He X, Wang X, Bao H, Han J (2009) Locality preserving nonnegative matrix factorization. In: Twenty-first international joint conference on artificial intelligence
2.
Zurück zum Zitat Chang J, Wang L, Meng G, Xiang S, Pan C (2017) Deep adaptive image clustering. In: Proceedings of the IEEE international conference on computer vision, pp 5879–5887 Chang J, Wang L, Meng G, Xiang S, Pan C (2017) Deep adaptive image clustering. In: Proceedings of the IEEE international conference on computer vision, pp 5879–5887
3.
Zurück zum Zitat Chen D, Lv J, Zhang Y (2017) Unsupervised multi-manifold clustering by learning deep representation. In: Workshops at the thirty-first AAAI conference on artificial intelligence Chen D, Lv J, Zhang Y (2017) Unsupervised multi-manifold clustering by learning deep representation. In: Workshops at the thirty-first AAAI conference on artificial intelligence
4.
Zurück zum Zitat Chen X, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: Twenty-fifth AAAI conference on artificial intelligence Chen X, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: Twenty-fifth AAAI conference on artificial intelligence
5.
Zurück zum Zitat Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc: Ser B (Methodological) 39(1):1–22MathSciNetMATH Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc: Ser B (Methodological) 39(1):1–22MathSciNetMATH
6.
Zurück zum Zitat Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process Mag 29(6):141–142CrossRef Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process Mag 29(6):141–142CrossRef
7.
Zurück zum Zitat Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on machine learning, ICML ’04. ACM, New York, p. 29 Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on machine learning, ICML ’04. ACM, New York, p. 29
9.
Zurück zum Zitat Gdalyahu Y, Weinshall D, Werman M (2001) Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans Pattern Anal Mach Intell 23(10):1053–1074CrossRef Gdalyahu Y, Weinshall D, Werman M (2001) Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans Pattern Anal Mach Intell 23(10):1053–1074CrossRef
10.
Zurück zum Zitat Ghasedi Dizaji K, Herandi A, Deng C, Cai W, Huang H (2017) Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of the IEEE international conference on computer vision, pp 5736–5745 Ghasedi Dizaji K, Herandi A, Deng C, Cai W, Huang H (2017) Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of the IEEE international conference on computer vision, pp 5736–5745
11.
Zurück zum Zitat Gowda KC, Krishna G (1978) Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern Recognit 10(2):105–112CrossRef Gowda KC, Krishna G (1978) Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern Recognit 10(2):105–112CrossRef
12.
Zurück zum Zitat Guo X, Gao L, Liu X, and Yin J (2017) Improved deep embedded clustering with local structure preservation. In: IJCAI, pp 1753–1759 Guo X, Gao L, Liu X, and Yin J (2017) Improved deep embedded clustering with local structure preservation. In: IJCAI, pp 1753–1759
13.
Zurück zum Zitat Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with data augmentation. In: Asian conference on machine learning, pp 550–565 Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with data augmentation. In: Asian conference on machine learning, pp 550–565
14.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
15.
Zurück zum Zitat Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670MathSciNetCrossRef Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670MathSciNetCrossRef
16.
Zurück zum Zitat Hsu C-C, Lin C-W (2017) Cnn-based joint clustering and representation learning with feature drift compensation for large-scale image data. IEEE Trans Multimedia 20(2):421–429CrossRef Hsu C-C, Lin C-W (2017) Cnn-based joint clustering and representation learning with feature drift compensation for large-scale image data. IEEE Trans Multimedia 20(2):421–429CrossRef
17.
Zurück zum Zitat Hu W, Miyato T, Tokui S, Matsumoto E, Sugiyama M (2017) Learning discrete representations via information maximizing self-augmented training. In: Proceedings of the 34th international conference on machine learning, vol. 70, pp 1558–1567. JMLR. org Hu W, Miyato T, Tokui S, Matsumoto E, Sugiyama M (2017) Learning discrete representations via information maximizing self-augmented training. In: Proceedings of the 34th international conference on machine learning, vol. 70, pp 1558–1567. JMLR. org
18.
Zurück zum Zitat Huang P, Huang Y, Wang W, Wang L (2014) Deep embedding network for clustering. In: 2014 22nd International conference on pattern recognition, pp 1532–1537. IEEE Huang P, Huang Y, Wang W, Wang L (2014) Deep embedding network for clustering. In: 2014 22nd International conference on pattern recognition, pp 1532–1537. IEEE
19.
Zurück zum Zitat Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: an unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148 Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: an unsupervised and generative approach to clustering. arXiv preprint arXiv:​1611.​05148
22.
Zurück zum Zitat Kurita T (1991) An efficient agglomerative clustering algorithm using a heap. Pattern Recognit 24(3):205–209MathSciNetCrossRef Kurita T (1991) An efficient agglomerative clustering algorithm using a heap. Pattern Recognit 24(3):205–209MathSciNetCrossRef
23.
Zurück zum Zitat Li F, Qiao H, Zhang B (2018) Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recognit 83:161–173CrossRef Li F, Qiao H, Zhang B (2018) Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recognit 83:161–173CrossRef
24.
Zurück zum Zitat Liu X, Dou Y, Yin J, Wang L, Zhu E (2016) Multiple kernel k-means clustering with matrix-induced regularization. In: Thirtieth AAAI conference on artificial intelligence Liu X, Dou Y, Yin J, Wang L, Zhu E (2016) Multiple kernel k-means clustering with matrix-induced regularization. In: Thirtieth AAAI conference on artificial intelligence
25.
Zurück zum Zitat MacQueen J et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. Oakland, CA, USA, pp 281–297 MacQueen J et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. Oakland, CA, USA, pp 281–297
26.
Zurück zum Zitat McLachlan G, Peel D (2004) Finite mixture models. Wiley, LondonMATH McLachlan G, Peel D (2004) Finite mixture models. Wiley, LondonMATH
27.
Zurück zum Zitat Nene SA, Nayar SK, Murase H, et al (1996) Columbia object image library (coil-20) Nene SA, Nayar SK, Murase H, et al (1996) Columbia object image library (coil-20)
28.
Zurück zum Zitat Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, pp 849–856 Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, pp 849–856
29.
Zurück zum Zitat Peng X, Feng J, Lu J, Yau W-Y, Yi Z (2017) Cascade subspace clustering. In: Thirty-first AAAI conference on artificial intelligence Peng X, Feng J, Lu J, Yau W-Y, Yi Z (2017) Cascade subspace clustering. In: Thirty-first AAAI conference on artificial intelligence
30.
Zurück zum Zitat Saito S, Tan RT (2017) Neural clustering: concatenating layers for better projections Saito S, Tan RT (2017) Neural clustering: concatenating layers for better projections
31.
Zurück zum Zitat Shah SA, Koltun V (2017) Robust continuous clustering. Proc Natl Acad Sci 114(37):9814–9819CrossRef Shah SA, Koltun V (2017) Robust continuous clustering. Proc Natl Acad Sci 114(37):9814–9819CrossRef
32.
Zurück zum Zitat Shi J, Malik J (2000) Normalized cuts and image segmentation. Departmental Papers (CIS), p 107 Shi J, Malik J (2000) Normalized cuts and image segmentation. Departmental Papers (CIS), p 107
33.
Zurück zum Zitat Song C, Liu F, Huang Y, Wang L, Tan T (2013) Auto-encoder based data clustering. In: Iberoamerican congress on pattern recognition. Springer, Berlin, pp 117–124 Song C, Liu F, Huang Y, Wang L, Tan T (2013) Auto-encoder based data clustering. In: Iberoamerican congress on pattern recognition. Springer, Berlin, pp 117–124
34.
Zurück zum Zitat Strehl A, Ghosh J (2002) Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(Dec):583–617MathSciNetMATH Strehl A, Ghosh J (2002) Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(Dec):583–617MathSciNetMATH
35.
Zurück zum Zitat Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW. Supplementary material for a deep semi-NMF model for learning hidden representations Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW. Supplementary material for a deep semi-NMF model for learning hidden representations
36.
Zurück zum Zitat Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(Dec):3371–3408MathSciNetMATH Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(Dec):3371–3408MathSciNetMATH
37.
Zurück zum Zitat Wang Z, Chang S, Zhou J, Wang M, Huang TS (2016) Learning a task-specific deep architecture for clustering. In: Proceedings of the 2016 SIAM international conference on data mining. SIAM, pp 369–377 Wang Z, Chang S, Zhou J, Wang M, Huang TS (2016) Learning a task-specific deep architecture for clustering. In: Proceedings of the 2016 SIAM international conference on data mining. SIAM, pp 369–377
38.
Zurück zum Zitat Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:​1708.​07747
39.
Zurück zum Zitat Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp 478–487 Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp 478–487
40.
Zurück zum Zitat Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 3861–3870. JMLR. org Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 3861–3870. JMLR. org
41.
Zurück zum Zitat Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5147–5156 Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5147–5156
42.
Zurück zum Zitat Zhang J, Li K, Liang Y, Li N (2017) Learning 3D faces from 2D images via stacked contractive autoencoder. Neurocomputing, S0925231217301431 Zhang J, Li K, Liang Y, Li N (2017) Learning 3D faces from 2D images via stacked contractive autoencoder. Neurocomputing, S0925231217301431
43.
Zurück zum Zitat Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process, pp 1–1 Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process, pp 1–1
44.
Zurück zum Zitat Zhang W, Wang X, Zhao D, Tang X (2012) Graph degree linkage: agglomerative clustering on a directed graph. In: European conference on computer vision. Springer, Berlin, pp 428–441 Zhang W, Wang X, Zhao D, Tang X (2012) Graph degree linkage: agglomerative clustering on a directed graph. In: European conference on computer vision. Springer, Berlin, pp 428–441
45.
Zurück zum Zitat Zhao D, Tang X (2009) Cyclizing clusters via zeta function of a graph. In: Advances in neural information processing systems, pp 1953–1960 Zhao D, Tang X (2009) Cyclizing clusters via zeta function of a graph. In: Advances in neural information processing systems, pp 1953–1960
46.
Zurück zum Zitat Zhu Q, Zhang R (2019) A classification supervised auto-encoder based on predefined evenly-distributed class centroids. arXiv preprint arXiv:1902.00220 Zhu Q, Zhang R (2019) A classification supervised auto-encoder based on predefined evenly-distributed class centroids. arXiv preprint arXiv:​1902.​00220
Metadaten
Titel
An Image Clustering Auto-Encoder Based on Predefined Evenly-Distributed Class Centroids and MMD Distance
verfasst von
Qiuyu Zhu
Zhengyong Wang
Publikationsdatum
11.01.2020
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10194-y

Weitere Artikel der Ausgabe 2/2020

Neural Processing Letters 2/2020 Zur Ausgabe

Neuer Inhalt