Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

20.03.2017

An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution

verfasst von: Zhaopeng Hao, Wanrong Cao

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an efficient algorithm is presented by the extrapolation technique to improve the accuracy of finite difference schemes for solving the fractional boundary value problems with nonsmooth solution. Two popular finite difference schemes, the weighted shifted Grünwald difference (WSGD) scheme and the fractional centered difference (FCD) scheme, are revisited and stability of the schemes is shown in maximum norm. Based on the analysis of leading singularity of exact solution for the underlying problem, it is demonstrated that, with the use of the proposed algorithm, the improved WSGD and FCD schemes can achieve higher accuracy than the original ones for nonsmooth solution. To further improve the accuracy for solving problems with small fractional order, an extended algorithm dealing with two-term singularities correction is also developed. Several numerical examples are given to validate our theoretical prediction. It is shown that both accuracy and convergence rate of numerical solutions can be significantly improved by using the proposed algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef
2.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Levy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Levy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef
3.
Zurück zum Zitat Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)MathSciNetCrossRefMATH Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)MathSciNetCrossRefMATH Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetCrossRefMATH Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH
7.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Ervin, V. J., Heuer, N., Roop, J. P.: Regularity of the solution to 1-D fractional order diffusion equations, arXiv:1608.00128v1 [math.NA] (2016) Ervin, V. J., Heuer, N., Roop, J. P.: Regularity of the solution to 1-D fractional order diffusion equations, arXiv:​1608.​00128v1 [math.NA] (2016)
9.
Zurück zum Zitat Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)MathSciNetMATH Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)MathSciNetMATH
10.
Zurück zum Zitat Hao, Z., Fan, K., Cao, W., Sun, Z.Z.: A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275, 238–254 (2016)MathSciNet Hao, Z., Fan, K., Cao, W., Sun, Z.Z.: A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275, 238–254 (2016)MathSciNet
11.
Zurück zum Zitat Hao, Z., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods for Partial Differ. Equ. 33(1), 105–124 (2017) Hao, Z., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods for Partial Differ. Equ. 33(1), 105–124 (2017)
12.
Zurück zum Zitat Hao, Z., Sun, Z.Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH Hao, Z., Sun, Z.Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)CrossRef Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)CrossRef
14.
Zurück zum Zitat Höfling, F., Franosch, T.: Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4), 046602 (2013)MathSciNetCrossRef Höfling, F., Franosch, T.: Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4), 046602 (2013)MathSciNetCrossRef
15.
Zurück zum Zitat Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Jin, B., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems. ESAIM Math. Model. Numer. Anal. 49(5), 1261–1283 (2015)MathSciNetCrossRefMATH Jin, B., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems. ESAIM Math. Model. Numer. Anal. 49(5), 1261–1283 (2015)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Jovanovic, B.S., Suli, E.: Analysis of finite difference schemes. Springer, London (2014)CrossRefMATH Jovanovic, B.S., Suli, E.: Analysis of finite difference schemes. Springer, London (2014)CrossRefMATH
18.
Zurück zum Zitat Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. doi:10.1007/s10444-016-9476-x Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. doi:10.​1007/​s10444-016-9476-x
20.
Zurück zum Zitat Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Mclean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH Mclean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH
26.
Zurück zum Zitat Sousa, E.: A second-order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)MathSciNetCrossRefMATH Sousa, E.: A second-order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Tian, W.Y., Zhou, H., Deng, W.H.: A class of second-order difference approximation for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W.Y., Zhou, H., Deng, W.H.: A class of second-order difference approximation for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
30.
31.
Zurück zum Zitat Wang, H., Du, N.: A super fast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRefMATH Wang, H., Du, N.: A super fast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Yuste, S.B., Joaquín, Q.-M.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)MathSciNetCrossRefMATH Yuste, S.B., Joaquín, Q.-M.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order convergence of nonsmooth solutions to multi-term fractional differential equations, arXiv:1701.00996 (2017) Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order convergence of nonsmooth solutions to multi-term fractional differential equations, arXiv:​1701.​00996 (2017)
35.
Zurück zum Zitat Zhang, Y., Sun, Z.Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH Zhang, Y., Sun, Z.Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Zhao, L., Deng, W.: High-order finite difference methods on non-uniform meshes for space fractional operators. Adv. Comput. Math. 42, 425–468 (2016)MathSciNetCrossRefMATH Zhao, L., Deng, W.: High-order finite difference methods on non-uniform meshes for space fractional operators. Adv. Comput. Math. 42, 425–468 (2016)MathSciNetCrossRefMATH
Metadaten
Titel
An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution
verfasst von
Zhaopeng Hao
Wanrong Cao
Publikationsdatum
20.03.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0417-8

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe

Premium Partner