Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 3/2020

01.07.2020 | APPLIED PROBLEMS

An Integrated Segmentation Techniques for Myocardial Ischemia

verfasst von: R. Merjulah, J. Chandra

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Myocardial Ischemia segmentation is a challenging task for basic and translational research on cardiovascular, as it provides ultimately “realistic” in heart muscle model. The main objective of the research work is to find an efficient segmentation technique for the myocardial ischemia based on the myocardial infarcted MRI data set for the accurate classification of scar volume. The paper will give an insight about the segmentation technique based on myocardial ischemia and discusses essential cellular components. The paper provides an integrated approach which comprises of fuzzy c-means and morphological operations along with median filtering enhancement technique help in detecting the myocardial ischemia. The developed model is tested with 2D and 3D enhanced myocardial ischemia MRI and also with normal heart. The purpose of segmentation in myocardial ischemia is to identify the scar region in the heart. The integrated model is evaluated based on statistical measures and validated based on manual segmentation done by clinical expert. The scar classification is done based on the myocardial ischemia segmentation which leads to better prediction of arrhythmia in heart patient. The integrated model is considered as one of the best model for segmenting myocardial ischemia.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Heusch, “Reduction of infarct size by ischaemic post-conditioning in humans: Fact or fiction?” Eur. Heart J. 33 (1), 13–15 (2012). G. Heusch, “Reduction of infarct size by ischaemic post-conditioning in humans: Fact or fiction?” Eur. Heart J. 33 (1), 13–15 (2012).
2.
Zurück zum Zitat A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: A survey,” IEEE Trans. Med. Imaging 32 (7), 1153–1190 (2013). A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: A survey,” IEEE Trans. Med. Imaging 32 (7), 1153–1190 (2013).
3.
Zurück zum Zitat V. Bhavana and H. K. Krishnappa, “A survey on multi-modality medical image fusion,” in Proc. 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (Chennai, India, 2016), pp. 1326–1329. V. Bhavana and H. K. Krishnappa, “A survey on multi-modality medical image fusion,” in Proc. 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (Chennai, India, 2016), pp. 1326–1329.
4.
Zurück zum Zitat M. A. Brown, and R. C. Semelka, MRI Basic Principles of Applications, 2nd ed. (Wiley, New York, 1999). M. A. Brown, and R. C. Semelka, MRI Basic Principles of Applications, 2nd ed. (Wiley, New York, 1999).
5.
Zurück zum Zitat F. Ritter, T. Boskamp, A. Homeyer, H. Laue, M. Schwier, F. Link, and H.-O. Peitgen, “Medical image analysis,” IEEE Pulse 2 (6), 60–70 (2011). F. Ritter, T. Boskamp, A. Homeyer, H. Laue, M. Schwier, F. Link, and H.-O. Peitgen, “Medical image analysis,” IEEE Pulse 2 (6), 60–70 (2011).
6.
Zurück zum Zitat M. Rajchl, “Interactive hierarchical max-flow segmentation of scar tissue from late-enhancement cardiac MR images,” IEEE Trans. Med. Imaging33 (1), 159–172 (2013). M. Rajchl, “Interactive hierarchical max-flow segmentation of scar tissue from late-enhancement cardiac MR images,” IEEE Trans. Med. Imaging33 (1), 159–172 (2013).
7.
Zurück zum Zitat Y. Lu, Y. Yang, K. A. Connelly, G. A. Wright, and P. E. Radau, “Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images,” Quant. Imaging Med. Surg. 2 (2), 81–86 (2012). Y. Lu, Y. Yang, K. A. Connelly, G. A. Wright, and P. E. Radau, “Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images,” Quant. Imaging Med. Surg. 2 (2), 81–86 (2012).
8.
Zurück zum Zitat A. S. Flett, J. Hasleton, C. Cook, et al., “Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance,” JACC Cardiovasc. Imaging 4 (2), 150–156 (2011). A. S. Flett, J. Hasleton, C. Cook, et al., “Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance,” JACC Cardiovasc. Imaging 4 (2), 150–156 (2011).
9.
Zurück zum Zitat A. Schmidt, C. F. Azevedo, A. Cheng, et al., “Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction,” Circulation 115 (15), 2006–2014 (2007). A. Schmidt, C. F. Azevedo, A. Cheng, et al., “Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction,” Circulation 115 (15), 2006–2014 (2007).
10.
Zurück zum Zitat S. van Engeland, S. Timp, and N. Karssemeijer, “Finding corresponding regions of interest in mediolateral oblique and craniocaudal mammographic views,” Med. Phys. 33 (9), 3203–3212 (2006). S. van Engeland, S. Timp, and N. Karssemeijer, “Finding corresponding regions of interest in mediolateral oblique and craniocaudal mammographic views,” Med. Phys. 33 (9), 3203–3212 (2006).
11.
Zurück zum Zitat N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: Comparison of X-ray mammography and computer-assisted MR imaging,” Am. J. Roentgenol.168 (2), 501–506 (1997). N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: Comparison of X-ray mammography and computer-assisted MR imaging,” Am. J. Roentgenol.168 (2), 501–506 (1997).
12.
Zurück zum Zitat C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28 (1), 8–15 (2010). C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28 (1), 8–15 (2010).
13.
Zurück zum Zitat K. Nie, J.-H. Chen, S. Chan, M.-K. I. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu, and M.-Y. Su, “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Med. Phys.35 (12), 5253–5262 (2008). K. Nie, J.-H. Chen, S. Chan, M.-K. I. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu, and M.-Y. Su, “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Med. Phys.35 (12), 5253–5262 (2008).
14.
Zurück zum Zitat K. Nie, J.-H. Chen, S. Chan, M.-K. I. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu, and M.-Y. Su, “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Med. Phys.35 (12), 5253–5262 (2008). K. Nie, J.-H. Chen, S. Chan, M.-K. I. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu, and M.-Y. Su, “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Med. Phys.35 (12), 5253–5262 (2008).
15.
Zurück zum Zitat H. C. van Assen, M. G. Danilouchkine, A. F. Frangi, S. Ords, J. J. M. Westenberg, J. H. C. Reiber, B. P. F. Lelieveldt, “SPASM: A 3-D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data,” Med. Image Anal. 10 (2), 286–303 (2006). H. C. van Assen, M. G. Danilouchkine, A. F. Frangi, S. Ords, J. J. M. Westenberg, J. H. C. Reiber, B. P. F. Lelieveldt, “SPASM: A 3-D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data,” Med. Image Anal. 10 (2), 286–303 (2006).
16.
Zurück zum Zitat H. C. van Assen, M. G. Danilouchkine, M. S. Dirksen, J. H. C. Reiber, and B. P. F. Lelieveldt, “A 3-D active shape model driven by fuzzy inference: Application to cardiac CT and MR,” IEEE Trans. Inf. Technol. Biomed. 12 (5), 595–605 (2008). H. C. van Assen, M. G. Danilouchkine, M. S. Dirksen, J. H. C. Reiber, and B. P. F. Lelieveldt, “A 3-D active shape model driven by fuzzy inference: Application to cardiac CT and MR,” IEEE Trans. Inf. Technol. Biomed. 12 (5), 595–605 (2008).
17.
Zurück zum Zitat J. Koikkalainen, T. Tölli, K. Lauerma, K. Antila, E. Mattila, M. Lilja, and J. Lötjönen, “Methods of artificial enlargement of the training set for statistical shape models,” IEEE Trans. Med. Imaging 27 (11), 1643–1654 (2008). J. Koikkalainen, T. Tölli, K. Lauerma, K. Antila, E. Mattila, M. Lilja, and J. Lötjönen, “Methods of artificial enlargement of the training set for statistical shape models,” IEEE Trans. Med. Imaging 27 (11), 1643–1654 (2008).
18.
Zurück zum Zitat J. Peters, O. Ecabert, C. Meyer, R. Kneser, and J. Weese, “Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation,” Med. Image Anal. 14 (1), 70–84 (2010). J. Peters, O. Ecabert, C. Meyer, R. Kneser, and J. Weese, “Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation,” Med. Image Anal. 14 (1), 70–84 (2010).
19.
Zurück zum Zitat D. Rueckert, M. Lorenzo-Valdes, R. Chandrashekara, G. I. Sanchez-Ortiz, and R. Mohiaddin, “Non-rigid registration of cardiac MR: Application to motion modelling and atlas-based segmentation,” in Proc. 2002 IEEE International Symposium on Biomedical Imaging (ISBI 2002) (Washington, DC, USA, 2002), pp. 481–484. D. Rueckert, M. Lorenzo-Valdes, R. Chandrashekara, G. I. Sanchez-Ortiz, and R. Mohiaddin, “Non-rigid registration of cardiac MR: Application to motion modelling and atlas-based segmentation,” in Proc. 2002 IEEE International Symposium on Biomedical Imaging (ISBI 2002) (Washington, DC, USA, 2002), pp. 481–484.
20.
Zurück zum Zitat C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recogn. 32 (1), 71–86 (1999). C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recogn. 32 (1), 71–86 (1999).
21.
Zurück zum Zitat X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan, and S. Li, “Direct estimation of cardiac bi-ventricular volumes with regression forests,” in Medical Image Computing and Computer-Assisted Intervention−MICCAI 2014, Proc. MICCAI 2014, Part II, Ed. by P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Lecture Notes in Computer Science (Springer, Cham, 2014), Vol. 8674, pp. 586–593. X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan, and S. Li, “Direct estimation of cardiac bi-ventricular volumes with regression forests,” in Medical Image Computing and Computer-Assisted InterventionMICCAI 2014, Proc. MICCAI 2014, Part II, Ed. by P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Lecture Notes in Computer Science (Springer, Cham, 2014), Vol. 8674, pp. 586–593.
22.
Zurück zum Zitat L. Cordero-Grande, et al., “Unsupervised 4D myocardium segmentation with a Markov random field based deformable model,” Med. Image Anal. 15 (3), 283–301 (2011). L. Cordero-Grande, et al., “Unsupervised 4D myocardium segmentation with a Markov random field based deformable model,” Med. Image Anal. 15 (3), 283–301 (2011).
23.
Zurück zum Zitat M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model,” IEEE Trans. Med. Imaging 27 (2), 195–203 (2008). M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model,” IEEE Trans. Med. Imaging 27 (2), 195–203 (2008).
24.
Zurück zum Zitat N. Paragios, “A variational approach for the segmentation of the left ventricle in cardiac image analysis,” Int. J. Comput. Vision 50 (3), 345–362 (2002).MATH N. Paragios, “A variational approach for the segmentation of the left ventricle in cardiac image analysis,” Int. J. Comput. Vision 50 (3), 345–362 (2002).MATH
25.
Zurück zum Zitat H. Lombaert and F. Cheriet, “Spatio-temporal segmentation of the heart in 4D MRI images using graph cuts with motion cues,” in Proc. 2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (Rotterdam, Netherlands, 2010), pp. 492–495. H. Lombaert and F. Cheriet, “Spatio-temporal segmentation of the heart in 4D MRI images using graph cuts with motion cues,” in Proc. 2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (Rotterdam, Netherlands, 2010), pp. 492–495.
26.
Zurück zum Zitat B. S. Spottiswoode, X. Zhong, C. H. Lorenz, B. M. Mayosi, E. M. Meintjes, and F. H. Epstein, “Motion-guided segmentation for cine DENSE MRI,” Med. Image Anal. 13 (1), 105–115 (2009). B. S. Spottiswoode, X. Zhong, C. H. Lorenz, B. M. Mayosi, E. M. Meintjes, and F. H. Epstein, “Motion-guided segmentation for cine DENSE MRI,” Med. Image Anal. 13 (1), 105–115 (2009).
27.
Zurück zum Zitat L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017). L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017).
28.
Zurück zum Zitat O. Çiçek, O. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-net: Learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-Assisted Intervention−MICCAI 2016, Proc. MICCAI 2016, Part II, Ed. by S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 9901, pp. 424–432. O. Çiçek, O. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-net: Learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-Assisted InterventionMICCAI 2016, Proc. MICCAI 2016, Part II, Ed. by S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 9901, pp. 424–432.
29.
Zurück zum Zitat P. V. Tran, “A fully convolutional neural network for cardiac segmentation in short-axis MRI,” arXiv preprint arXiv:1604.00494 (2016). http://arxiv.org/abs/1604.00494 P. V. Tran, “A fully convolutional neural network for cardiac segmentation in short-axis MRI,” arXiv preprint arXiv:1604.00494 (2016). http://​arxiv.​org/​abs/​1604.​00494
30.
Zurück zum Zitat L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. Bezdek, “A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain,” IEEE Trans. Neural Networks 3 (5), 672–682 (1992). L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. Bezdek, “A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain,” IEEE Trans. Neural Networks 3 (5), 672–682 (1992).
31.
Zurück zum Zitat S. Shen, W. Sandham, M. Granat, and A. Sterr, “MRI fuzzy segmentation of brain tissue using neighbourhood attraction with neural-network optimization,” IEEE Trans. Inf. Technol. Biomed. 9 (3), 459–467 (2005). S. Shen, W. Sandham, M. Granat, and A. Sterr, “MRI fuzzy segmentation of brain tissue using neighbourhood attraction with neural-network optimization,” IEEE Trans. Inf. Technol. Biomed. 9 (3), 459–467 (2005).
32.
Zurück zum Zitat L. He and I. R. Greenshields, “An MRF spatial fuzzy clustering method for fMRI SPMs,” Biomed. Signal Process. Control 3 (4), 327–333 (2008). L. He and I. R. Greenshields, “An MRF spatial fuzzy clustering method for fMRI SPMs,” Biomed. Signal Process. Control 3 (4), 327–333 (2008).
33.
Zurück zum Zitat Y. Xia, D. G. Feng, T. J. Wang, R. C. Zhao, and Y. N. Zhang, “Image segmentation by clustering of spatial patterns,” Pattern Recogn. Lett. 28 (12), 1548–1555 (2007). Y. Xia, D. G. Feng, T. J. Wang, R. C. Zhao, and Y. N. Zhang, “Image segmentation by clustering of spatial patterns,” Pattern Recogn. Lett. 28 (12), 1548–1555 (2007).
34.
Zurück zum Zitat D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy C-means algorithm with application in medical image segmentation,” Artif. Intell. Med. 32 (1), 37–50 (2004). D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy C-means algorithm with application in medical image segmentation,” Artif. Intell. Med. 32 (1), 37–50 (2004).
35.
Zurück zum Zitat D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study,” Fuzzy Sets Syst. 161 (4), 522–543 (2010).MathSciNet D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study,” Fuzzy Sets Syst. 161 (4), 522–543 (2010).MathSciNet
36.
Zurück zum Zitat D. Graves and W. Pedrycz, “Performance of kernel-based fuzzy clustering,” Electron. Lett. 43 (25), 1445–1446 (2007). D. Graves and W. Pedrycz, “Performance of kernel-based fuzzy clustering,” Electron. Lett. 43 (25), 1445–1446 (2007).
37.
Zurück zum Zitat S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Trans. Syst. Man Cybern. 34 (4), 1907–1916 (2004). S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Trans. Syst. Man Cybern. 34 (4), 1907–1916 (2004).
38.
Zurück zum Zitat H. Y. Li, V. Bochko, T. Jaaskelainen, J. Parkkinen, and I.-F. Shen, “Kernel-based spectral color image segmentation,” J. Opt. Soc. Am. A Opt. Image Sci. 25 (11), 2805–2816 (2008). H. Y. Li, V. Bochko, T. Jaaskelainen, J. Parkkinen, and I.-F. Shen, “Kernel-based spectral color image segmentation,” J. Opt. Soc. Am. A Opt. Image Sci. 25 (11), 2805–2816 (2008).
39.
Zurück zum Zitat B. Zhao, J. T. Kwok, and C. Zhang, “Multiple kernel clustering,” in Proc. SIAM International Conference on Data Mining (SDM 2009) (Sparks, NV, USA, 2009), pp. 638–649. B. Zhao, J. T. Kwok, and C. Zhang, “Multiple kernel clustering,” in Proc. SIAM International Conference on Data Mining (SDM 2009) (Sparks, NV, USA, 2009), pp. 638–649.
40.
Zurück zum Zitat Q. Li, N. Mitianoudis, and T. Stathaki, “Spatial kernel K-harmonic means clustering for multi-spectral image segmentation,” IET Image Process. 1 (2), 156–167 (2007). Q. Li, N. Mitianoudis, and T. Stathaki, “Spatial kernel K-harmonic means clustering for multi-spectral image segmentation,” IET Image Process. 1 (2), 156–167 (2007).
41.
Zurück zum Zitat K. Muneeswaran, L. Ganesan, S. Arumugam, and K. R. Soundar, “Texture image segmentation using combined features from spatial and spectral distribution,” Pattern Recogn. Lett. 27 (7), 755–764 (2006). K. Muneeswaran, L. Ganesan, S. Arumugam, and K. R. Soundar, “Texture image segmentation using combined features from spatial and spectral distribution,” Pattern Recogn. Lett. 27 (7), 755–764 (2006).
42.
Zurück zum Zitat A. Guerrero-Curieses, J. L. Rojo-Álvarez, P. Conde-Pardo, I. Landesa-Vázquez, J. Ramos-López, and J. L. Alba-Castro, “On the performance of kernel methods for skin color segmentation,” EURASIP J. Adv. Signal Process. 2009, Article no. 856039, 1–13 (2009). A. Guerrero-Curieses, J. L. Rojo-Álvarez, P. Conde-Pardo, I. Landesa-Vázquez, J. Ramos-López, and J. L. Alba-Castro, “On the performance of kernel methods for skin color segmentation,” EURASIP J. Adv. Signal Process. 2009, Article no. 856039, 1–13 (2009).
43.
Zurück zum Zitat H.-D. Yuan, “Blind forensics of median filtering in digital images,” IEEE Trans. Inf. Forensics Secur. 6 (4), 1335–1345 (2011). H.-D. Yuan, “Blind forensics of median filtering in digital images,” IEEE Trans. Inf. Forensics Secur. 6 (4), 1335–1345 (2011).
44.
Zurück zum Zitat O. Jamshidi and A. H. Pilevar, “Automatic segmentation of medical images using fuzzy c-means and the genetic algorithm,” J. Comput. Med. 2013, Article ID 972970, 1–7 (2013). O. Jamshidi and A. H. Pilevar, “Automatic segmentation of medical images using fuzzy c-means and the genetic algorithm,” J. Comput. Med. 2013, Article ID 972970, 1–7 (2013).
45.
Zurück zum Zitat Y. Zhu and C. Huang, “An improved median filtering algorithm for image noise reduction,” Phys. Procedia 25, 609–616 (2012). Y. Zhu and C. Huang, “An improved median filtering algorithm for image noise reduction,” Phys. Procedia 25, 609–616 (2012).
46.
Zurück zum Zitat C. Chen, J. Ni, and J. Huang, “Blind detection of median filtering in digital images: A difference domain based approach,” IEEE Trans. Image Process. 22 (12), 4699–4710 (2013).MathSciNetMATH C. Chen, J. Ni, and J. Huang, “Blind detection of median filtering in digital images: A difference domain based approach,” IEEE Trans. Image Process. 22 (12), 4699–4710 (2013).MathSciNetMATH
47.
Zurück zum Zitat J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Comput. Geosci. 10 (2–3), 191–203 (1984). J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Comput. Geosci. 10 (2–3), 191–203 (1984).
48.
Zurück zum Zitat R. A. Robb, Biomedical Imaging, Visualization, and Analysis (Wiley, New York, 2000). R. A. Robb, Biomedical Imaging, Visualization, and Analysis (Wiley, New York, 2000).
49.
Zurück zum Zitat H. Suzuki and J. Toriwaki, “Automatic segmentation of head MRI images by knowledge guided thresholding,” Comput. Med. Imaging Graphics 15 (4), 233–240 (1991). H. Suzuki and J. Toriwaki, “Automatic segmentation of head MRI images by knowledge guided thresholding,” Comput. Med. Imaging Graphics 15 (4), 233–240 (1991).
50.
Zurück zum Zitat R. Pohle and K. D. Toennies, “Segmentation of medical images using adaptive region crowing,” in Medical Imaging 2001: Image Processing,Proc. SPIE4322, 1337–1346 (2001). R. Pohle and K. D. Toennies, “Segmentation of medical images using adaptive region crowing,” in Medical Imaging 2001: Image Processing,Proc. SPIE4322, 1337–1346 (2001).
51.
Zurück zum Zitat X. Liu and D.-L. Wang, “Image and texture segmentation using local spectral histograms,” IEEE Trans. Image Process. 15 (10), 3066–3077 (2006). X. Liu and D.-L. Wang, “Image and texture segmentation using local spectral histograms,” IEEE Trans. Image Process. 15 (10), 3066–3077 (2006).
52.
Zurück zum Zitat P. Radau, Y. Lu, K. Connelly, G. Paul, A. J. Dick, and G. A. Wright, “Evaluation framework for algorithms segmenting short axis cardiac MRI,” in MICCAI 2009 Workshops, The MIDAS Journal–Cardiac MR Left Ventricle Segmentation Challenge (2009). http://hdl.handle.net/10380/3070 P. Radau, Y. Lu, K. Connelly, G. Paul, A. J. Dick, and G. A. Wright, “Evaluation framework for algorithms segmenting short axis cardiac MRI,” in MICCAI 2009 Workshops, The MIDAS Journal–Cardiac MR Left Ventricle Segmentation Challenge (2009). http://​hdl.​handle.​net/​10380/​3070
53.
Zurück zum Zitat A. Shenbagarajan, V. Ramalingam, C. Balasubramanian, and S. Palanivel, “Tumor diagnosis in MRI brain image using ACM segmentation and ANN-LM classification techniques,” Indian J. Sci. Technol. 9 (1), 1–12 (2016). A. Shenbagarajan, V. Ramalingam, C. Balasubramanian, and S. Palanivel, “Tumor diagnosis in MRI brain image using ACM segmentation and ANN-LM classification techniques,” Indian J. Sci. Technol. 9 (1), 1–12 (2016).
54.
Zurück zum Zitat R. Ahmmed, A. S. Swakshar, Md. F. Hossain, and Md. A. Rafiq, “Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network,” in Proc. 2017 IEEE International Conference on Electrical, Computer, and Communication Engineering (ECCE 2017) (Cox’s Bazar, Bangladesh, 2017), pp. 229–237. R. Ahmmed, A. S. Swakshar, Md. F. Hossain, and Md. A. Rafiq, “Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network,” in Proc. 2017 IEEE International Conference on Electrical, Computer, and Communication Engineering (ECCE 2017) (Cox’s Bazar, Bangladesh, 2017), pp. 229–237.
55.
Zurück zum Zitat M. Sornam, M. S. Kavitha, and R. Shalini, “Segmentation and classification of brain tumor using wavelet and Zernike based features on MRI,” in Proc. 2016 IEEE International Conference on Advances in Computer Applications (ICACA) (Coimbatore, India, 2016), pp. 166–169. M. Sornam, M. S. Kavitha, and R. Shalini, “Segmentation and classification of brain tumor using wavelet and Zernike based features on MRI,” in Proc. 2016 IEEE International Conference on Advances in Computer Applications (ICACA) (Coimbatore, India, 2016), pp. 166–169.
56.
Zurück zum Zitat A. Tom and P. Jidesh, “Geometric transform invariant Brain-MR image analysis for tumor detection,” in Proc. 2013 International Conference on Circuits, Controls, and Communications (CCUBE 2013) (Bengaluru, India, 2016), Dec. 2013, pp. 1–6. A. Tom and P. Jidesh, “Geometric transform invariant Brain-MR image analysis for tumor detection,” in Proc. 2013 International Conference on Circuits, Controls, and Communications (CCUBE 2013) (Bengaluru, India, 2016), Dec. 2013, pp. 1–6.
Metadaten
Titel
An Integrated Segmentation Techniques for Myocardial Ischemia
verfasst von
R. Merjulah
J. Chandra
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 3/2020
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820030190

Weitere Artikel der Ausgabe 3/2020

Pattern Recognition and Image Analysis 3/2020 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Learning-Based Single Image Super-Resolution with Improved Edge Information

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

On the Metric on Images Invariant with Respect to the Monotonic Brightness Transformation