Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. An Introduction to Repair Techniques

verfasst von : Dr. Masashi Horiguchi, Dr. Kiyoo Itoh

Erschienen in: Nanoscale Memory Repair

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With larger capacity, smaller feature size, and lower voltage operations of memory-rich CMOS LSIs (Fig. 1.1), various kinds of “errors (faults)” have been prominent and the repair techniques for them have become more important. The “errors” are categorized as hard/soft errors, timing/voltage margin errors, and speed-relevant errors. Hard/soft errors and timing/voltage margin errors, which occur in a chip, are prominent in a memory array because the array comprises memory cells having the smallest size and largest circuit count in the chip. In particular, coping with the margin errors is becoming increasingly important, and thus an emerging issue for low-voltage nanoscale LSIs, since the errors rapidly increase with device and voltage scaling. Increase in operating voltage is one of the best ways to tackle the issue. However, this approach is not acceptable due to intolerably increased power dissipation. Speed-relevant errors, which are prominent at a lower voltage operation, include speed-degradation errors of the chip itself and intolerably wide chip-to-chip speed-variation errors caused by the ever-larger interdie design-parameter variation. For the LSI industry in order to flourish and proliferate, solutions based on in-depth investigation of the errors are crucial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2–9, Jan. 1979.CrossRef T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2–9, Jan. 1979.CrossRef
2.
Zurück zum Zitat K. Takeuchi, K. Shimohigashi, E. Takeda, E. Yamasaki, T. Toyabe and K. Itoh, “Alpha-particle-induced charge collection measurements for megabit DRAM cells,” IEEE Trans. Electron Devices, vol. 36, pp. 1644–1650, Sep. 1989.CrossRef K. Takeuchi, K. Shimohigashi, E. Takeda, E. Yamasaki, T. Toyabe and K. Itoh, “Alpha-particle-induced charge collection measurements for megabit DRAM cells,” IEEE Trans. Electron Devices, vol. 36, pp. 1644–1650, Sep. 1989.CrossRef
3.
Zurück zum Zitat J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein and C. W. Wahaus, “IBM experiments in soft fails in computer electronics (1978–1994),” IBM J. Res. Dev., vol. 40, pp. 3–18, Jan. 1996.CrossRef J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein and C. W. Wahaus, “IBM experiments in soft fails in computer electronics (1978–1994),” IBM J. Res. Dev., vol. 40, pp. 3–18, Jan. 1996.CrossRef
4.
Zurück zum Zitat K. Osada, K. Yamaguchi, Y. Saitoh and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, pp. 827–833, May 2004.CrossRef K. Osada, K. Yamaguchi, Y. Saitoh and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, pp. 827–833, May 2004.CrossRef
5.
Zurück zum Zitat E. Tammaru and J. B. Angell, “Redundancy for LSI yield enhancement,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 172–182, Dec. 1967.CrossRef E. Tammaru and J. B. Angell, “Redundancy for LSI yield enhancement,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 172–182, Dec. 1967.CrossRef
6.
Zurück zum Zitat A. Chen, “Redundancy in LSI memory array,” IEEE J. Solid-State Circuits, vol. SC-4, pp. 291–293, Oct. 1969.CrossRef A. Chen, “Redundancy in LSI memory array,” IEEE J. Solid-State Circuits, vol. SC-4, pp. 291–293, Oct. 1969.CrossRef
7.
Zurück zum Zitat K. Itoh, M. Horiguchi, and H. Tanaka, Ultra-low voltage nano-scale memories, Springer, New York, 2007. K. Itoh, M. Horiguchi, and H. Tanaka, Ultra-low voltage nano-scale memories, Springer, New York, 2007.
8.
Zurück zum Zitat R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic RAM,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 150–151. R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic RAM,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 150–151.
9.
Zurück zum Zitat R. R. DeSimone, N. M. Donofrio, B. L. Flur, R. H. Kruggel and H. H. Leung, “FET RAMs,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 154–155. R. R. DeSimone, N. M. Donofrio, B. L. Flur, R. H. Kruggel and H. H. Leung, “FET RAMs,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 154–155.
10.
Zurück zum Zitat T. Mano, J. Yamada, J. Inoue and S. Nakajima, “Circuit techniques for a VLSI memory,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 463–470, Oct. 1983.CrossRef T. Mano, J. Yamada, J. Inoue and S. Nakajima, “Circuit techniques for a VLSI memory,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 463–470, Oct. 1983.CrossRef
11.
Zurück zum Zitat H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.CrossRef H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.CrossRef
12.
Zurück zum Zitat K. Arimoto, K. Fujishima, Y. Matsuda, M. Tsukude, T. Oishi, W. Wakamiya, S. Satoh, M. Yamada and T. Nakano, “A 60-ns 3.3-V-only 16-Mbit DRAM with multipurpose register,” IEEE J. Solid-State Circuits, vol. 24, pp. 1184–1190, Oct. 1989.CrossRef K. Arimoto, K. Fujishima, Y. Matsuda, M. Tsukude, T. Oishi, W. Wakamiya, S. Satoh, M. Yamada and T. Nakano, “A 60-ns 3.3-V-only 16-Mbit DRAM with multipurpose register,” IEEE J. Solid-State Circuits, vol. 24, pp. 1184–1190, Oct. 1989.CrossRef
13.
Zurück zum Zitat R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Proc. ESSCIRC, Sep. 2008, pp. 222–225. R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Proc. ESSCIRC, Sep. 2008, pp. 222–225.
14.
Zurück zum Zitat M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, Oct. 1989.CrossRef M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, Oct. 1989.CrossRef
15.
Zurück zum Zitat M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2004, pp. 288–291. M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2004, pp. 288–291.
16.
Zurück zum Zitat Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron Devices, vol. 45, pp. 1453–1458, July 1998.CrossRef Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron Devices, vol. 45, pp. 1453–1458, July 1998.CrossRef
17.
Zurück zum Zitat Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita and K. Ishibashi, “A soft-error hardened latch scheme for SoC in a 90nm technology and beyond,” Proc. CICC, Oct. 2004, pp. 329–332. Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita and K. Ishibashi, “A soft-error hardened latch scheme for SoC in a 90nm technology and beyond,” Proc. CICC, Oct. 2004, pp. 329–332.
18.
Zurück zum Zitat S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp. 792–804, Apr. 2006.CrossRef S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp. 792–804, Apr. 2006.CrossRef
19.
Zurück zum Zitat J. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik and V. De, “A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 282–283. J. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik and V. De, “A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 282–283.
20.
Zurück zum Zitat D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner and D. Blaauw, “A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 284–285. D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner and D. Blaauw, “A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 284–285.
21.
Zurück zum Zitat Kelin J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS,” IEDM Proc., pp. 471–474, Dec. 2007. Kelin J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS,” IEDM Proc., pp. 471–474, Dec. 2007.
22.
Zurück zum Zitat Shih-Wei Sun and Paul G. Y. Tsui, “Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation,” IEEE J. Solid-State Circuits, vol. 30, pp. 947–949, Aug. 1995.CrossRef Shih-Wei Sun and Paul G. Y. Tsui, “Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation,” IEEE J. Solid-State Circuits, vol. 30, pp. 947–949, Aug. 1995.CrossRef
Metadaten
Titel
An Introduction to Repair Techniques
verfasst von
Dr. Masashi Horiguchi
Dr. Kiyoo Itoh
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7958-2_1

Neuer Inhalt