Skip to main content

2001 | OriginalPaper | Buchkapitel

An Introduction to Sampling Analysis

verfasst von : P. L. Butzer, G. Schmeisser, R. L. Stens

Erschienen in: Nonuniform Sampling

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

A basic property of algebraic polynomials $${{P}_{n}}\left( t \right): = \sum\nolimits_{{k = 0}}^{n} {{{a}_{k}}{{t}^{k}}}$$ of degree ≤ n is that any such polynomial is fully and uniquely determined by its values P n (t v ) at an arbitrary given set of n + 1 distinct points t0, t1,…, tv,…, t n .The converse question, whether it is always possible to find a suitable polynomial P n (x) which takes on the function (polynomial) values y0, y1,…, y n associated with any n + 1 distinct abscissas (interpolation or nodal points) t0, t1, …, t n , is answered by the Lagrangian interpolation formula: (1)$$ P_n \left( t \right): = \sum\limits_{k = 0}^n {y_k l_k \left( t \right) = \sum\limits_{k = 0}^n {P_n \left( {t_k } \right)l_k \left( t \right)} } $$ where, for k = 0, 1,…, n, (2)$$\begin{array}{*{20}{c}} {{{l}_{k}}\left( t \right): = {{l}_{{k,n}}}\left( t \right) = \frac{{{{\omega }_{{n + 1}}}\left( t \right)}}{{\left( {t - {{t}_{k}}} \right){{{\omega '}}_{{n + 1}}}\left( {{{t}_{k}}} \right)}},} & {{{\omega }_{{n + 1}}}\left( t \right): = \left( {t - {{t}_{0}}} \right) \ldots \left( {t - {{t}_{n}}} \right).} \\ \end{array}$$ Indeed, l k (t) is the only algebraic polynomial of degree n which possesses the property (3)$${{l}_{k}}\left( {{{t}_{\nu }}} \right) = {{\delta }_{{k,\nu }}} = \left\{ {\begin{array}{*{20}{c}} 0 & {for{\mkern 1mu} \nu \ne \kappa } \\ 1 & {for{\mkern 1mu} \nu \ne \kappa .} \\ \end{array} } \right.$$ Hence the polynomial P n (t) of degree n, thus determined, is unique.

Metadaten
Titel
An Introduction to Sampling Analysis
verfasst von
P. L. Butzer
G. Schmeisser
R. L. Stens
Copyright-Jahr
2001
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4615-1229-5_2

Neuer Inhalt